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Spatio-temporally constrained reconstruction for
hyperpolarized carbon-13 MRI using kinetic models

John Maidens, Jeremy W. Gordon, Hsin-Yu Chen, Ilwoo Park, Mark Van Criekinge, Eugene Milshteyn, Robert
Bok, Rahul Aggarwal, Marcus Ferrone, James B. Slater, John Kurhanewicz, Daniel B. Vigneron, Murat Arcak,

and Peder E. Z. Larson

Abstract—We present a method of generating spatial maps of
kinetic parameters from dynamic sequences of images collected
in hyperpolarized carbon-13 MRI experiments. The technique ex-
ploits spatial correlations in the dynamic traces via regularization
in the space of parameter maps. Similar techniques have proven
successful in other dynamic imaging problems such as dynamic
contrast enhanced MRI. In this paper we apply these techniques
for the first time to hyperpolarized MRI problems, which are
particularly challenging due to limited SNR. We formulate
the reconstruction as an optimization problem and present an
efficient iterative algorithm for solving it based on the alternation
direction method of multipliers (ADMM). We demonstrate that
this technique improves the qualitative appearance of parameter
maps estimated from low SNR dynamic image sequences, first in
simulation then on a number of data sets collected in vivo. The
improvement this method provides is particularly pronounced at
low SNR levels.

I. INTRODUCTION

Magnetic resonance imaging (MRI) using hyperpolarized
carbon-13 labeled substrates has made it possible to probe
metabolism in vivo with chemical specificity [1], [2]. This
technique is increasingly being applied in the clinic, allow-
ing researchers to investigate metabolic conditions ranging
from prostate cancer [3] to heart disease [4]. In particular,
experiments studying the conversion of hyperpolarized [1-
13C]pyruvate to [1-13C]lactate are common, as the rate of
conversion is upregulated in many cancers, a phenomenon
known as the Warburg effect.

MRI using hyperpolarized carbon-13 is challenging due
to the dynamic nature of the data collected, the low signal-
to-noise ratio (SNR), and the difficulty of presenting large
data sets consisting of dynamic spectroscopic images in an
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interpretable manner. Metabolism mapping by estimating pa-
rameters in a kinetic model from hyperpolarized MRI data has
been shown to be useful for overcoming a number of these
challenges [5]. Constraining the time evolution of signal in
a given voxel to follow a kinetic model has been shown to
allow map reconstruction from noisy, undersampled dynamic
images, and to reduce the number of signal-depleting excita-
tions required to generate images. Parameter mapping also fa-
cilitates interpretation of dynamic image data by summarizing
spatial, temporal and chemical (i.e. chemical shift spectrum)
information in a single spatial map.

Parameter maps are naturally a form of constrained re-
construction, as they constrain the data to lie on a manifold
of trajectories of the dynamical system parametrized by the
system’s parameters. This constrained reconstruction reduces
the sequence of dynamic images to a single map by exploiting
temporal correlations within the dynamic imaging data. In this
paper, we demonstrate that we can exploit spatial correla-
tions in addition to temporal correlations by integrating prior
information about the parameter map through regularization.
Similar approaches have proven useful recently in the context
of pharmacokinetic parameter mapping in dynamic contrast
enhanced and cardiac perfusion MRI [6]–[12]. To our knowl-
edge, this is the first time this family of spatial regularization
techniques have been used in hyperpolarized MRI, where they
are particularly beneficial due to the challenges of working
with low SNR images.

This paper is organized as follows. In Section II we intro-
duce background on modelling hyperpolarized 13C MRI data
and existing approaches to parameter mapping. In Section III
we introduce a framework for spatially-constrained parameter
mapping to exploit spatial correlations in the data. In Section
IV we present an algorithm for efficient inference in this
framework. In Section V we present the results of simulation
experiments where we demonstrate the effectiveness of the
method. In Section VI we then apply the method to a collection
of clinically-relevant data sets. Finally, Section VII concludes
the paper and briefly discusses potential extensions of this
work.

Preliminary results from this paper were presented at the
2017 Annual Meeting of the International Society of Magnetic
Resonance in Medicine [13].
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II. BACKGROUND

A. Data Model

We model the dynamic evolution of the data Yi collected
from a single voxel i using a dynamic model for a two-
dimensional state x(t) = [x1(t) x2(t)]T :

dx

dt
(t) =

[
−kPL −R1P 0

kPL −R1L

]
x(t) +

[
kTRANS

0

]
u(t). (1)

This system of ordinary differential equations (ODEs) has
been widely used to model the uni-directional conversion of
an injected substrate (pyruvate, in this case) to a metabolic
product (lactate, in this case) [14]. The state x1(t) models the
longitudinal magnetization in the substrate pool, and the state
x2(t) models the longitudinal magnetization in the product
pool. The parameter kPL describes the rate at which the
substrate is metabolized, the parameter kTRANS describes the
rate at which the substrate is taken up by the tissue, and the
parameters R1P and R1L are lumped parameters that account
for T1 magnetization decay, metabolism of the substrate into
unmeasured products and flow of substrate out of the voxel.

Measurements are collected at a sequence of times
{t1, . . . , tN}. Neglecting the effect of the input between tk
and tk+1, integrating this continuous-time dynamic model
and incorporating the effect of repeated radio-frequency (RF)
excitation leads to a discrete-time model for the magnetization
at acquisition times tk of the form

L̂(k + 1) = e−R1L∆t cos(αL(k))L̂(k)

− kPL
e−(R1P+kPL)∆t − e−R1L∆t

R1P −R1L + kPL
cos(αP (k))P (k).

(2)

This gives a statistical model that describes the evolution of
the predicted lactate signal L̂(k) = x2(tk) as a function of the
measured pyruvate signal P (k) = x1(tk) and the flip angles
αP and αL applied to the pyruvate and lactate compartments.
The predicted lactate is assumed to be L̂(0) = 0 at the
beginning of the experiment.

For the purpose of generating simulated data, the data
measured at each time tk are assumed to be independent and
follow a bivariate normal distribution with mean δxδyδzx(tk)
and covariance σ2I where I denotes the 2× 2 identity matrix
and δx, δy and δz describe the image resolution and slice
thickness. We collect the time series data collected from voxel
i into a matrix Yi =

[
P (1) · · · P (N)
L(1) · · · L(N)

]
and denote the

unknown parameters to be estimated from the data θi = kPL.

B. Voxel-Wise Parameter Estimation

Given a collection of data Yi from a voxel i we wish to
generate an estimate of the parameter θi that describes the
tissue in that voxel. We assume that θi lies in a parameter
space Θ. We consider the class of “M-estimators” [15] that
minimize a loss function

θ̂i ∈ argmin
θ∈Θ

`(θi|Yi).

In the present paper, we consider the nonlinear least squares
loss function

`(θi|Yi) = ‖Yi − Ŷi(θi)‖F (3)

where Ŷ =

[
P (1) · · · P (N)

L̂(1) · · · L̂(N)

]
denotes the predicted signal

given the pyruvate time series and ‖·‖F denotes the Frobenius
norm (i.e. the `2 norm of the vectorized matrix). Under the
assumption that the data collected are normally-distributed
with mean proportional to x(tk), independent with identical
variance, the minimum of this nonlinear least squares loss
is also the maximum likelihood estimate of the parameter
vector. While we consider only this loss in the present paper,
the results are applicable generally to any computationally
tractable loss function.

III. CONSTRAINED PARAMETER MAPPING

In order to incorporate prior information about the spatial
distribution of metabolic rates and exploit spatial correlations
within the data, we constrain the maps to have a desired
structure through regularization. This results in an optimization
problem in Lagrangian form

minimize
∑
i∈V

`(θi|Yi) + λr(θ) (4)

where θ = (θi)i∈V denotes the map of parameters across
all voxels, r is a regularization term, and λ denotes a La-
grange multiplier that can be tuned in order to achieve the
desired regularization strength. The choice of an appropriate
regularizer depends on the desired features of the parameter
map. Common choices include Tikhonov (`2) regularization,
`1 regularization, and total variation regularization. We briefly
summarize these three methods below.

Tikhonov regularization, or `2 regularization penalizes the
size of the parameters θi. It involves adding a quadratic penalty
term

r(θ) = ‖θ‖22
where ‖ · ‖2 denotes the ordinary Euclidean norm. For linear
regression problems with orthogonal covariates, this regu-
larization leads to uniform shrinkage of the estimates [16].
For the nonlinear parameter mapping problems we consider
here, using Tikhonov regularization helps to suppress large
parameter values in the unperfused “background” region.
`1 regularization is another shrinkage method that penalizes

parameters based on their `1 norm

r(θ) = ‖θ‖1.

This method induces sparsity in the resulting parameter maps,
and hence also helps to suppress parameter values in the back-
ground region. It is closely-related to basis pursuit denoising
[17] and lasso regression [18].

Total variation (TV) regularization is another method com-
monly used for image denoising [19]. In this paper, we use an
anisotropic total variation regularization term given by

r(θ) = ‖∇θ‖1 :=
∑

(i,j)∈N

|θi − θj |

where ∇ denotes a discrete differencing operator and N de-
notes the set of all neighbouring voxels. As all applications we
consider in this paper we consider three-dimensional images,
the neighbourhood N consists of the six voxels j immediately
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adjacent to the voxel i. Anisotropic total variation is chosen
due to the availability of numerical packages for extremely fast
computation of proximity operators via the proxTV package
[20], [21]. TV regularization is known to preserve edges and
large-scale structure in images while rejecting noise [22],
resulting in natural-looking reconstructed images.

IV. ITERATIVE ALGORITHMS FOR CONSTRAINED
PARAMETER MAPPING

A naive algorithm for solving this optimization problem
by directly optimizing the objective function (4) would be
inefficient because it involves solving a joint optimization over
all {θi : i ∈ V}. Thus the computation time required to directly
solve the optimization problem increases dramatically with
matrix size, making naive approaches inefficient even for the
images of moderate resolution considered here. To solve the
optimization problem more efficiently, we can take advantage
of the particular structure of the problem using the ADMM
algorithm.

The alternating direction method of multipliers (ADMM)
is an iterative optimization algorithm that is well-suited to
efficiently solving such problems that can be decomposed into
a sum of two terms [23]. In contrast with other distributed
optimization algorithms, the ADMM algorithm is particularly
well-suited to the problem formulated in this paper as it
splits the required optimization into the sum of a set of
loss functions ` that are complex to optimize, but can be
optimized independently for each voxel, and a regularization
r that is relatively simple but high-dimensional as it couples
a large number of neighboring voxels. By exploiting this
decomposition, ADMM allows the optimization problem to be
solved efficiently. The general problem that ADMM attempts
to solve is an optimization problem of the form

minimize f(x) + g(z)

subject to Ax+Bz = c.
(5)

The algorithm does so by iteratively applying the updates

xk+1 = argmin
x

(
f(x) +

ρ

2
‖Ax−Bzk − c+ uk‖22

)

zk+1 = argmin
z

(
g(z) +

ρ

2
‖Axk+1 −Bz − c+ uk‖22

)
uk+1 = uk +Axk+1 +Bzk+1 − c.

Under the assumption that f and g are closed, proper, convex
functions and that the Lagrangian

L(x, z, λ) = f(x) + g(z) + λT (Ax+Bz − c)

has a saddle point, it can be shown [23] that the residuals rk =
Axk+Bzk−c converge to zero and the values f(xk)+g(zk)
converge to the optimal value of the problem (5).

A. ADMM for iterative parameter mapping

To solve (4) we transform the problem to a form amenable
to the ADMM algorithm by introducing a new variable z = θ
and solving

minimize
∑
i∈V

`(θi|Yi) + λr(z)

subject to θ − z = 0.

(6)

The ADMM iteration is then given as

θk+1 = argmin
θ

∑
i∈V

`(θi|Yi) +
ρ

2
‖θ − zk + uk‖22

zk+1 = argmin
z

λr(z) +
ρ

2
‖θk+1 − z + uk‖22

uk+1 = uk + θk+1 − zk+1.

This method is sometimes known as Douglas-Rachford split-
ting [24]. Note that the θ update is additively separable.
Introducing the proximity operator

proxf (x) = argmin
u

f(u) +
1

2
‖u− x‖22

we can re-write this iteration as

θk+1
i = prox 1

ρ `(·|Yi)
(zki − uki ) i ∈ V

zk+1 = proxλ
ρ r

(θk+1 + uk)

uk+1 = uk + θk+1 − zk+1.

Here, the θi updates can be performed independently for each
i ∈ V , significantly decreasing time and memory required for
computation and allowing the parallelization of this step.

Note that for the particular choice of loss function given
in Section III, `(·|Yi) are nonconvex functions and thus the
formal convergence guarantees do not apply. Despite this fact,
we have seen in all the experimental instances of the problem
we have considered that the algorithm converges to a sensible
optimum robustly for a variety of initializations. In what
follows, we use the modified Levenberg-Marquardt algorithm
[25] implemented in MINPACK [26] to solve the nonlinear
least squares problem corresponding to the θ update step in
the ADMM iteration, and for the unregularized estimation.

V. SIMULATED RESULTS AND DISCUSSION

To demonstrate the effectiveness of this method, we perform
a sequence of experiments on simulated data. We begin with
an experiment using a simple numerical phantom designed to
test the robustness of metabolic parameter mapping methods
to differences in perfusion, as well as their ability to reliably
resolve large and small features.

A. Reconstruction at a variety of noise levels

To generate simulated data for validating our algorithm,
we simulate trajectories for each voxel of the 16 × 16 × 16
dynamic phantom described shown in Figure 1. This phantom
describes maps of the kTRANS and kPL parameters and is
designed to test an algorithm’s ability to resolve both large
and small features under high and low perfusion conditions.
More details about the phantom can be found in Section 5.5
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(a) kTRANS map (b) kPL map

Fig. 1: Slice through z = 0 of a 16×16×16 voxel 3D dynamic
phantom.

of [27]. The data are generated according to the model (1)
with arterial input u(t) = kTRANSA0(t − t0)γe(−(t−t0)/β

added to the pyruvate compartment, and states scaled by
cos(αP/L(k)) and measured outputs scaled by sin(αP/L(k))
each time that simulated data are collected, where αP/L(k) is
a spectrally-selective flip angle applied to spins in the P or
L compartment during acquisition k. An optimized dynamic
flip angle sequence based on the method of [28] is used for
the simulation, and shown in Figure 2. This same flip angle
sequence is also used for a majority of the in vivo experiments.
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Fig. 2: Dynamic flip angle sequence used for experimental
validation

We then add independent, identically-distributed (iid) Gaus-
sian noise at a variety of SNR levels, measured based on the
SNR in the lactate channel corresponding to the peak lactate
level. Simulated time series and image data are shown in
Figure 3.

For SNR levels of 8, 4, 2, and 1, we fit the model (2)
to the data using the loss function (3) and the regularization
r(θ) = λ1‖∇θ‖1 + λ2‖θ‖22 with λ1 =1e06 and λ2 =1e08. A
combination of `2 and TV regularization was chosen because
the `2 penalty prevents estimation bias in the unperfused
region while the TV penalty encourages smooth maps with
well-defined tissue boundaries. The values of λ1 and λ2 are
selected such that the total absolute error is minimized (see
Section V-B). Before fitting, the simulated data are scaled by
1/ sin(αP/L(k)) to counteract the effect of the time-varying
flip angle sequence. In Figure 4 we compare the results of this

(a) Sample time series data from a high kTRANS , high kPL

voxel

(b) Pyruvate image slice
through z = 0

(c) Lactate image slice through
z = 0

Fig. 3: Simulated data generated at a maximum lactate SNR
level of 2.

constrained fit against two competing methods: independent
voxel-wise fit (equivalent to our method with λ1 = λ2 = 0)
and independent voxel-wise fit followed by anisotropic total
variation denoising of the resulting parameter map. We see that
the constrained reconstruction allows accurate parameter maps
to be generated in high noise regimes where the competing
methods have difficulty. In particular, the baseline method of
unconstrained mapping followed by denoising performs poorly
in unperfused areas where it is attempting to fit parameter
values to pure noise. In contrast, the constrained fit is able to
suppress noise in the unperfused region via `2 regularization.

B. Quantitative Improvements

In addition to the qualitative benefits of spatial regulariza-
tion demonstrated in the previous section, regularization can
also lead to quantitative improvements in the estimates of
dynamic parameters. In simulation experiments where we have
access to the ground truth values of the model parameters, we
can quantify the improvement in estimates θ̂ of θ via the total
absolute error

‖θ̂ − θ‖1 =
∑
i∈V
|k̂PLi − kPLi |.

In Figure 5 we plot the total absolute error for various values
of the regularization parameters λ1 and λ2. This experiment
was performed using the 16 × 16 × 16 phantom from Figure
1 with a maximum lactate SNR value of 2.0. We see that
small values of λ1 and λ2 lead to larger quantitative errors in
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Fig. 4: Results of simulated kPL mapping experiment for
various values of the maximum lactate image SNR

the parameter maps than the optimized values λ1 =1e06 and
λ2 =1e08 used in the previous section. Note that the optimal
values will depend on a number of factors potentially including
the geometry and sparsity of the phantom, and the noise
distribution, SNR and signal amplitude in the dynamic images.
Thus by appropriately choosing λ1 and λ2, we can achieve
quantitative improvements in the parameter map in addition to
the qualitative improvements we have already demonstrated.
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Fig. 5: Total absolute estimation error for kPL for various
values of the regularization parameters λ1 and λ2.

VI. IN VIVO RESULTS AND DISCUSSION

We now move on to experiments on a number of datasets
collected in vivo. In contrast to the simulation experiments,
we no longer have access to ground truth values of the model
parameters to make quantitative comparisons. However, we
will use the in vivo experiments to demonstrate that the
spatially-constrained parameter mapping technique leads to
qualitative improvements in the parameter maps.

We begin with an experiment in healthy rats where we
can collect high SNR data. For these data, we add artificial
noise to demonstrate how the spatially-constrained parameter
mapping technique can be used to allow reconstruction in
low SNR regimes, for realistic anatomies. We then apply
this technique to the analysis of a number of low SNR

clinical datasets collected in prostate cancer patients. These
experiments demonstrate that spatio-temporally constrained
kinetic modelling can be used to generate improved metabolic
parameter maps from low SNR experimental data.

A. High SNR rat kidney data analysis

We begin by analyzing a metabolic dataset acquired
in healthy Sprague-Dawley rats on a 3T MRI scanner
(MR750, GE Healthcare). 2.5mL of 80mM hyperpolarized
[1-13C]pyruvate was injected over 15s, and data acquisition
coincided with the start of injection. Metabolites from a single
slice were individually excited with a singleband spectral-
spatial RF pulse and encoded with a single-shot EPI readout
[29], an in-plane resolution of 3 x 3mm, a 15mm slice
thickness centered on the kidneys, and a 2s sampling interval.
The resulting dynamic image sequences are relatively high
SNR with Rician noise resulting from magnitude images, are
shown in Figure 6.

In Figure 7 we compare a spatially constrained fit of the
data against an independent voxel-wise fit. The voxel-wise
fit is masked to only show kPL fit in the highly perfused
regions where the total area under the pyruvate curve (AUC)
is greater than 2e04. We see that the constrained fit leads
to more smoothly-varying maps. Additionally, the Tikhonov
regularization helps alleviate problems with artificially high
kPL estimates in the background region and tissues with low
perfusion, a common problem with kPL mapping from Rician-
distributed data. This leads to more realistic kPL values in the
intestinal tissue proximal to the kidneys without significantly
affecting the kPL estimates in the kidney voxels, and also
removes the need to mask the images to the high perfusion
region.

To investigate the robustness of this technique to noise,
we perform a sequence of experiments in which artificial
iid Gaussian noise of varying strengths is added to the in
vivo data using Python’s numpy.randn random number
generator before fitting kPL. The random number generator is
seeded explicitly using numpy.random.seed(0) to ensure
reproducibility. This allows us to replicate the results of Figure
4 with more realistic anatomy. We see in Figure 8 that
qualitatively, the spatially-constrained fit is more robust to
strong noise than the independent fit. Further, we see in Figure
9 that spatially-constrained parameter mapping outperforms a
baseline of simply downsampling the raw image sequence.

B. Human prostate cancer data analysis

To demonstrate feasibility of this technique on clinically-
relevant data, we have analyzed two prostate cancer datasets
collected during clinical experiments at UCSF. These datasets
were chosen because they had relatively low SNR compared to
our typical prostate cancer studies, and thus would potentially
benefit the most from this approach.

Imaging was performed using a 3T GE scanner using a
abdominal clamshell 13C transmission coil and an endo-rectal
receive coil. The injected solution consisted of 220-260 mM
[1-13C]-pyruvate at a dose of 0.43 mL/kg. Dissolution DNP
was performed using a 5T SpinLab polarizer (GE Healthcare).
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(a) Sample time series data from high lactate SNR voxel

(b) Pyruvate image at time t =
50s

(c) Lactate image at time t =
50s

Fig. 6: Dynamic metabolite images collected in the healthy rat
experiment. Maximum lactate SNR in these images is 21.1.

(a) Independent voxel-wise fit
masked to region with pyruvate
AUC > 2e04.

(b) Independent voxel-wise fit
without masking exhibits high
kPL values in the background
region.

(c) Spatially-constrained fit
with λ1 = 1e07 and
λ2 = 1e10.

(d) Scatterplot of constrained
and unconstrained kPL fits.

Fig. 7: Comparison of unconstrained and constrained kPL
maps fit to the healthy rat dataset.

SNR = 8 SNR = 4 SNR = 2 SNR = 1

Voxel-wise
parameter map

Spatially-constrained
parameter map

1/s

(a) Raw maps
SNR = 8 SNR = 4 SNR = 2 SNR = 1

1/s

Voxel-wise
parameter map

Spatially-constrained
parameter map

(b) Difference maps using reconstruction without added noise as
baseline

Fig. 8: Comparison of kPL maps at various artificial noise
levels. Noise level is measured based on maximum lactate
SNR over the time and space dimensions in the dynamic
images. Regularization parameters used for the constrained fits
are chosen to be the same as in Figure 7.

Fig. 9: Comparison of kPL maps for varying spatial resolu-
tions. Raw data is downsampled to the appropriate matrix size
prior to fitting parameter maps for the independent voxel-wise
and spatially-constrained fits.

Before injection the electron paramagnetic agent is filtered out,
and automated pH, temperature, polarization, volume and EPA
concentration tests were performed.

Images were encoded using two techniques. One set of im-
ages labeled “EPI” were collected using a spectrally-selective
excitation with an echo-planar (EPI) readout [29]. The other
set of images labelled “EPSI” was collected using a blipped
EPSI acquisition with a compressed sensing reconstruction
[30].

Raw space/time/chemical data reconstructed from the EPI
acquisition are shown in Figure 10. The raw data are rather
noisy and also difficult to interpret for metabolic activity due
to 3D spatial, temporal and chemical dimensions.

We fit 3D kPL parameter maps to the data using the
constrained reconstruction method. Regularization strengths
λ1 and λ2 are selected manually based on the qualitative
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(a) Time series data at pyruvate and lactate frequencies corre-
sponding to the voxel indicated in red.

(b) Lactate data from 8 of the 16 slices at the time of the final
acquisition t=42 seconds from the start of injection.

Fig. 10: Sample of raw EPI data collected in a prostate cancer
patient.

appearance of the parameter maps. Due to the quick parameter
map estimation enabled by the parallelized ADMM iteration,
it is possible to perform this hyperparameter exploration
relatively efficiently. In Figure 11 we compare the resulting
parameter maps for a variety of values for the regularization
parameters λ1 and λ2. The results suggest that we should
choose λ1 large enough that the images do not appear noisy,
but small enough that the signal does not disappear, and choose
λ2 large enough to suppress the bias in the unperfused region
but small enough that it does not cause too much shrinkage in
the perfused region. Figure 12 shows L-curves for the choice
of λ1 and λ2, providing an alternative quantitative method
of choosing parameters. We see that for very low or very
high values of the regularization parameters, the regularization
and residual terms cluster at the top left and bottom right
of the figures respectively. Regularization parameter values
approximately midway between the two clusters correspond
to the qualitatively good parameter choices found in Figure
11. Additionally, in Figures 13 and 14 we compare uncon-
strained and constrained fits on the dataset from the EPI
and EPSI acquisitions. The fits are overlaid on 1H images
of the anatomy using SIVIC [31]. The unconstrained fit is
masked to voxels with a minimum pyruvate SNR due to

Fig. 11: Constrained estimates of the kPL paramater with
different regularization strengths compared on a single slice
from the 3D EPI human prostate cancer dataset.

(a) L-curve for λ1 for fixed
λ2 = 1e09.

(b) L-curve for λ2 for fixed
λ1 = 2e05.

Fig. 12: L-curve analysis for the 3D EPI human prostate
cancer dataset. The residual

∑
`(θi|Yi) is plotted against the

regularizer r(θ) for various values of λ1 and λ2.

fitting instability with low pyruvate signals, whereas this is
not necessary for the constrained fit. We see that with an
appropriate choice of regularization, we can recover qualita-
tively satisfying parameter maps for a variety of datasets. Note
that the regularization parameters differ significantly between
the EPI and EPSI acquisitions due mainly to the different
amplitudes of the raw dynamic image data. Note that the strong
regularization leads to significant quantitative shrinkage of the
kPL estimates. However, it improves the qualitative indication
of the highly metabolically-active regions and removes noise-
like characteristics of the fitting that is primarily due to low
pyruvate SNR.

Figure 15 demonstrates how the constrained kPL maps
could be integrated with the multi-parametric 1H MRI into the
clinical workflow to improve tumor localization and visualize
treatment response. Elevated kPL in the prostate regions
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(a) Unconstrained fit (λ1 = λ2 = 0) masked to the region of high SNR.

(b) Spatially-constrained fit (λ1 = 5e04 and λ2 = 1e09).

Fig. 13: Comparison of unconstrained and constrained kPL maps fit to the 3D EPI data set overlaid on proton images of the
prostate anatomy. Maps are plotted for four slices through the prostate with high lactate signal. This patient had biopsy proven
cancer in the left base and midgland (Gleason 3+3 and 3+4), which is consistent with the results seen in the spatially-constrained
kPL fit.

(a) Unconstrained fit (λ1 = λ2 = 0) masked to the region of high SNR.

(b) Spatially-constrained fit (λ1 = 2e17 and λ2 = 1e14).

Fig. 14: Comparison of unconstrained and constrained kPL maps fit to 3D EPSI data overlaid on prostate anatomy. Maps are
plotted for five slices through the prostate with high lactate signal. This patient had extensive bilateral biopsy-proven prostate
cancer (Gleason 4+4 and 4+3) involving the entire prostate. The spatially-constrained fit is consistent with significant bilateral
disease, though the high kPL region does not extend all the way to the prostate apex, likely due to its distance from the
endo-rectal 13C RF coil.

of Figures 13, 14 and 15 were consistent with biopsy and
multiparametric (mp)-MRI [32] results. The patient studied
in Figures 13 and 15A had biopsy proven cancer in the left
base and midgland (Gleason 3+3 and 3+4). Their mp-MRI
exam had an associated clear-cut region of reduced T2 signal
and water apparent diffusion coefficient (ADC), and enhanced
uptake and washout on dynamic contrast enhanced (DCE)
MRI in the left posterior peripheral zone of the midgland
with extension across the midline. This is in strong agreement
with the region of high kPL shown with the constrained
mapping in Figures 13 and 15A, which is in the left base
and midgland with some extension across the midline. The
patient studied in Figures 14 and 15B had extensive bilateral

biopsy-proven prostate cancer (Gleason 4+4 and 4+3). mp-
MRI demonstrated a large volume of prostate cancer involving
the entire prostate, with right, posterior mid gland macroscopic
extracapsular extension and bilateral seminal vesicle invasion.
The kPL fitting in Figures 14 and 15B also shows bilateral
regions of high kPL, including the right, posterior midgland
region identified by mp-MRI. The high kPL does not, however,
extend through the entire prostate, most likely due to low
SNR further away from the endo-rectal 13C RF coil sitting
just below the prostate in the images. While further studies
are required to fully evaluate the potential improvements
in assessing cancer metabolism, this work demonstrates the
feasibility and qualitative results of this approach on clinical
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Fig. 15: Multi-parametric 1H MRI and 13C kPL maps for the EPI (A) and EPSI (B) study showing the midgland prostate.
Regions of high kPL on the constrained reconstruction correlated well with biopsy proven aggressive cancer. It also agrees
with lesions on multiparameteric MRI, including T2-weighted, diffusion weighted, and ADC maps (red arrows). In contrast,
the lesions are obfuscated by spurious noise on the unconstrained kPL maps, or require an empirical hard threshold on the
pyruvate signal to visualize.

datasets.

VII. CONCLUSION

We have demonstrated that constrained reconstruction of
parameter maps via spatial regularization improves the qual-
itative performance of model-based parameter mapping. We
have shown this first in simulated experiments where we can
also demonstrate quantitative improvements in the parameter
estimates. The results of the in vivo studies echo the qualitative
benefits of constraining parameter maps through regulariza-
tion, and validate that the ADMM-based algorithm we have
presented enables efficient reconstruction of parameter maps
for problems of practical interest by exploiting the objective
function’s structure.

Looking forward, the ability to exploit spatial and temporal
correlations in the data for denoising could potentially help
to overcome problems with low SNR in hyperpolarized 13C
MRI, enabling the reconstruction of higher resolution kPL
maps. Also, developing methods to choose the regularization
strength hyperparameters systematically may help to improve
the quantitative bias seen in some of the in vivo experiments.
In particular, methods based on Shure’s unbiased risk estimate
used for selecting hyperparameters in total variation denoising
applications [33] can likely be adapted to this context. We
suspect that the results of this paper could be further improved
by replacing the ordinary least squares objective used by a
weighted least squares objective where weights are chosen
based on SNR, or based on an optimization problem based
on maximizing Fisher information about the metabolic rate
[34]. Finally, we would like to develop a better theoretical
understanding of the ADMM algorithm’s convergence on the
non-convex optimization problem presented.
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