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Abstract Hyperpolarized carbon-13 magnetic resonance imaging (MRI) is an emerg-
ing technology for probing metabolic activity in living subjects, which promises
to provide clinicians new insights into diseases such as cancer and heart failure.
These experiments involve an injection of a hyperpolarized substrate, often [1-
13C]pyruvate, which is imaged over time as it spreads throughout the subject’s body
and is transformed into various metabolic products. Designing these dynamic exper-
iments and processing the resulting data requires the integration of noisy informa-
tion across temporal, spatial, and chemical dimensions, and thus provides a wealth
of interesting problems from an optimization and control perspective.

In this work we provide an introduction to the field of hyperpolarized carbon-13
MRI targeted toward researchers in control and systems theory. We then describe
three challenge problems that arise in metabolic imaging with hyperpolarized sub-
strates: the design of optimal substrate injection profiles, the design of optimal flip
angle sequences, and the constrained estimation of metabolism maps from experi-
mental data. We describe the current state of research on each of these problems,
and comment on aspects that remain open. We hope that these challenge problems
will serve to direct future research in control and systems theory.
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1 Introduction

Carbon is arguably the most important element in biochemistry. It forms the basis of
all organic molecules that make up the human body, yet only recently have we begun
to be able to image carbon using magnetic resonance imaging (MRI). The emerging
technology that makes this possible is known as hyperpolarized carbon-13 MRI, and
it has enabled in vivo imaging with spatial, temporal and chemical specificity for the
first time. This development is leading to new insights into the spatial distribution
of metabolic activity through the analysis of dynamic image sequences.

The processes that are imaged in hyperpolarized carbon-13 MRI are inherently
dynamic, resulting from blood flow, tissue perfusion, metabolic conversion, and po-
larization decay. Thus there is an opportunity for control and systems theory re-
searchers to improve the dynamic models, excitation inputs and estimation algo-
rithms used in hyperpolarized carbon-13 MRI.

The remainder of this paper is organized as follows. In Section 2 we present the
basics of hyperpolarized carbon-13 MRI. In Section 3 we discuss how this technol-
ogy enables the quantification of metabolism and the clinical significance of this ad-
vancement. In Section 4 we present a dynamic model of metabolic flux and discuss
methods of estimating model parameters from experimental MRI data. In Section
5 we discuss formal formulations of optimal design for dynamic experiments. Fi-
nally, in Section 6 we present three control and systems theory problems that arise
in metabolic MRI using hyperpolarized carbon-13 and discuss open questions.

2 Hyperpolarized carbon-13 MRI for imaging metabolism

The measurable signal in MRI arises from radio-frequency electromagnetic waves
generated by oscillating atomic nuclei. Nuclei containing an odd number of pro-
tons and/or neutrons possess a nuclear spin angular momentum, each giving rise to
a small magnetic moment. Thus nuclei such as carbon ( 12C) and oxygen (10) are
invisible to MRI, while hydrogen ('H) and the carbon-13 isotope ('*C) exhibit mag-
netic resonance (MR). Hydrogen MR, sometimes known as proton MR, is currently
the most commonly-used in clinical settings due to the high abundance of hydrogen
atoms in the human body (largely in the form of H,O) and its high sensitivity [20].
Hydrogen MRI is pervaisive for noninvasive imaging of anatomic structure, but pro-
vides little functional information. In this work, we focus on carbon-13 MR, which
can be used to provide information about metabolic function (Figure 1).

2.1 Polarization

Each carbon-13 nucleus in a sample gives rise to a small magnetic moment, which
we think of as a vector in three-dimensional space. In the absence of a magnetic
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Fig. 1 Metabolic image col-
lected in a clinical prostate
cancer study. The color over-
lay corresponds to a metabolic
map of a lactic acid fermenta-
tion pathway generated using
hyperpolarized carbon-13
MRI. High metabolic activity
coincides with the region of
biopsy-proven prostate can-
cer. Image courtesy of Dr.
Jeremy Gordon, Department
of Radiology and Biomedical
Imaging, UCSF School of
Medicine.

field these magnetic moments, or spins, are oriented randomly in space. In this state,
where the spins are oriented randomly, the net magnetization M = (M, M,, M) of
the sample (computed by summing the magnetic moments from all nuclei in the
sample) is zero (Figure 2a).
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(a) Spins in the absence of
an external magnetic field are
oriented randomly, leading to
a net magnetization M = 0.

(b) In a magnetic field, spins
orient themselves with the
field, leading to a small net
magnetization M.

(c) Hyperpolarizing the sam-
ple causes the spins to coor-
dinate direction, leading to a
greater net magnetization M.

Fig. 2: Polarization of a collection of spins leads to a net magnetization M. The
magnitude of the vector M can be increased by hyperpolarization.

In the presence of a magnetic field, the spins will orient themselves to the mag-
netic field with some aligned parallel (n") with the magnetic field lines and some
aligned anti-parallel (n~) with the magnetic field lines. Due to a small energy dif-
ference between the two states, there is a slight bias toward the lower energy state
aligned parallel to the magnetic field. This bias leads to a polarization of the sample,
defined as the excess of spins in the lower energy state. At thermal equilibrium, the
polarization P is given in terms of the applied magnetic field strength By, ambient
temperature 7', gyromagnetic ratio y of the nucleus (10.705 MHz/T for '3C), and
the Boltzmann (kg) and reduced Planck (%) constants as

nt—n" YhBo
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This slight bias leads to a small net magnetization of the sample at thermal equilib-
rium (Figure 2b) given by

0 0
M=10)= 242 0
NYR2L(L+1)B
Mo 3kpT .

where N is the number of spins in the sample and [ is the spin operator. Note that
we use the standard convention that the z axis is chosen such that it points in the
direction of the applied By field.

Due to the low natural abundance of carbon-13 in the body and its low gyromag-
netic ratio, the thermal equilibrium magnetization is insufficient to achieve sufficient
signal for imaging. Thus carbon-13-based imaging relies on hyperpolarization tech-
nology to increase the polarization beyond the equilibrium level (Figure 2c¢).

2.2 Hyperpolarization using DNP

Hyperpolarized carbon-13 MRI has been enabled by new technologies for hyper-
polarizing carbon-13-containing substrates in liquid state, leading to a greater than
10000 increase in signal-to-noise ratio (SNR) when imaging carbon-13. This tech-
nology relies on dissolution dynamic nuclear polarization (D-DNP) to achieve sig-
nificant polarization gains [1].

Dynamic nuclear polarization relies on transferring polarization to carbon-13 nu-
clei from electrons using microwave radiation. In this procedure, a sample is doped
with a small quantity of stable electron radical. The sample is then cooled to a tem-
perature of 1.1 K and placed in a 3.35 T magnet. At this temperature and mag-
netic field strength, electrons become almost 100% polarized. Then by irradiating
the sample with microwaves, polarization is transferred from the electrons to the
carbon-13 nuclei in a biochemical substrate of interest. To prepare the sample for
injection and in vivo imaging, it is then rapidly dissolved in warm water, neutralized
to a safe pH and the electron radical is removed before injection [19].

2.3 Polarization decay in hyperpolarized substrates

Upon warming and removal from the magnet, the magnetization induced by hyper-
polarization begins to decay over time toward the thermal equilibrium magnetization
due to a phenomenon known as 7} relaxation. The dynamics of the magnetization
vector are governed by a system of state equations know as the rotating frame Bloch
equations:
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with initial condition M(0) = (0,0,M(0)). Here, the evolution of the state M is
dependent on a sequence of control inputs u#; and u, corresponding to the amplitude
and frequency of the applied radio-frequency (RF) electromagnetic excitation pulse
(known as the B; field) that rotates the vector M about the origin, and 7 and T
parameters that govern the relaxation time in the longitudinal (z) and transverse
(x,y) directions respectively.

When the sample is hyperpolarized we have M,(0) > My, therefore the contri-
bution of the affine term in (1) is negligible. Thus in the absence of RF excitation,
the longitudinal magnetization exhibits exponential the decay

M. (1) = M.(0)e™"/Ti.

In addition to 7; relaxation, magnetization also decays due to repeated RF ex-
citation. Throughout this paper we will assume that the RF pulse occurs on a time
scale much faster than 77 and 75, therefore it can be modelled as an instantaneous
state reset that rotates M to some angle o away from the z axis, known as the flip
angle. We also assume that a spoiled gradient echo pulse sequence [2] is used, thus
between RF pulses a strong magnetic field gradient is applied to dephase the trans-
verse magnetization ensuring that M, = M, = 0. Thus at a time ™ immediately
after an RF pulse, the magnetization is given in terms of the magnetization at time
¢t~ immediately before the RF pulse as

M(t") = cos(a)M(t")

Mo (r+) i= /M ()2 4+ My ()2 = sin()M ().

It now follows that at a time ¢ following a sequence of RF pulses with flip angles
, - .., 0y—1 the longitudinal magnetization remaining has decayed to

M. (t) = M.(0)e~"/Th Aﬁ cos(ay).
=0

2.4 Chemical shift

The unique aspect of hyperpolarized carbon-13 MRI, when compared to competing
metabolic imaging technologies such as positron emission tomography (PET), is
that it is the only technique that provides chemical specificity. It is possible to infer
chemical information from MRI data due to a phenomenon known as chemical shift.

Chemical shift results in a small change in the resonant frequency of spins. This
change is caused by shielding of the nuclei from the main magnetic field By due to
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nearby electron orbitals [20]. The resulting frequency shift can be exploited to selec-
tively excite specific metabolites [13], or distinguish between metabolites produced.
This gives hyperpolarized carbon-13 MRI the unique ability to quantify metabolic
flux in specific pathways.

Fig. 3 MR spectrum illustrat-
ing chemical shift of 3C bio- Lactaste  Aanine
chemical compounds. Image

courtesy of Dr. Jeremy Gor- A A

don, Department of Radiol-
ogy and Biomedical Imaging,
UCSF School of Medicine.
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3 Metabolism and Disease

Hyperpolarized carbon-13 MRI is uniquely positioned to investigate metabolic dis-
ease biomarkers due to its ability to track the metabolism of injected substrates with
spatial, temporal and chemical specificity. In practice, a commonly-used substrate
is [1-13C]pyruvate, which consists of pyruvate molecules labeled with a carbon-13
atom at the first carbon position (Figure 4).

Q
HsC_'3C. -
Fig. 4 [1-'3C] pyruvate \([)]/ 0

molecule.

Pyruvate plays an important role in cellular metabolism, as the end product of
glycolysis. Following glycolysis, under anaerobic conditions pyruvate is typically
converted to lactate via lactic acid fermentation, which serves as a short-term means
of producing energy. Activity in this pathway can be quantified using carbon-13
MRI via observed [1-!3C]lactate signal. Under aerobic conditions, pyruvate can also
serve as an input to the citric acid cycle, which produces cellular energy in the form
of adenosine triphosphate (ATP) through cellular respiration in the mitochondria.
Activity in this pathway can be quantified via pyruvate flux through the pyruvate
dehydrogenase complex (PDC), which is proportional to observed '*C-bicarbonate
signal in carbon-13 MRI studies [18].
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3.1 Pyruvate metabolism changes in cancer

Cancer results in changes to metabolism that can be used to diagnose and moni-
tor treatment response. In particular, a phenomenon known as the Warburg Effect
results in increased lactic acid fermentation in place of cellular respiration in can-
cerous tissues even under aerobic conditions [7]. Thus the rate of production of
[1-13C]lactate from injected hyperpolarized [1-!3C]pyruvate can be used to monitor
cancer metabolism in vivo. The ability of hyperpolarized carbon-13 MRI to distin-
guish cancerous tissue from healthy tissue been demonstrated in animal model [6]
and clinical human prostate cancer [19] studies.

3.2 Pyruvate metabolism changes in heart failure

Metabolic changes in the heart have also been proposed as a significant contribut-
ing factor to congestive heart failure [24]. Hyperpolarized carbon-13 MRI stud-
ies are being used to study this hypothesis by quantifying metabolic fluxes in the
heart. Hyperpolarized carbon-13 MRI has been used to demonstrate that the devel-
opment of heart failure leads to decreased [1-'>C]pyruvate flux through the PDC in
a porcine model of dilated cardiomyopathy [22]. Recent clinical studies have also
demonstrated feasibility of measuring PDC flux in heart tissue using hyperpolarized
[1-13C]pyruvate in healthy human subjects [5].

4 Quantifying Metabolic Flux

Hyperpolarized carbon-13 MRI enables dynamic experiments that show metabolic
activity with spatial, temporal and chemical specificity. This enables quantifying
the spatial distribution of the activity of specific metabolic pathways. In this sec-
tion, we discuss model-based methods of fusing this information into spatial maps
of metabolic activity. This is done by estimating kinetic parameters in a model de-
scribing the evolution of the MR signal observed in each spatial volume element
(voxel).

4.1 Kinetic models of hyperpolarized MRI signal in a single voxel

Hyperpolarized carbon-13 MRI researchers commonly rely on linear compartmen-
tal models for describing the evolution of signal in a voxel [4, 11, 12]. These models
describe the magnetization exchange from the pool of injected hyperpolarized sub-
strate to pools corresponding to various metabolic products. In the its simplest form,
this amounts to the irreversible metabolic conversion of the substrate S to a single
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product P performed at a characteristic kinetic rate kgp:
skt p

Throughout this article, we will focus on extremely simple pathways of this form,
though extension to multiple products or bidirectional conversion is straightforward.
Note that the clinically-relevant pathways discussed in Sections 3.1 and 3.2 can both
be modelled in this simple form.

In the absence of external RF excitation, magnetization in a particular voxel i
evolves via T decay and label exchange according to the differential equations

d (M;s(t) —Ryis—ksp; O M, ;s(t) kTRANS,i
A I It @) @
dt [Mz,i,P(t) kspi —Riip| [Mip(t) o e @

where the states M, ; s and M_ ; p represent the longitudinal magnetization in voxel i
in the substrate and product compartments respectively, the input # model an arterial
input function (AIF) describing the arrival of substrate from the circulatory system,
and the parameters ksp;, R1;s, R1,p, and krpans describe the metabolic rate, T
decay rate in the substrate pool, and 77 decay rate in the product pool, and perfusion
rate respectively.

When a constant flip angle excitation sequence and repetition time is used for
imaging, decay due to RF excitation can be modelled by replacing R;;x by an
effective decay rate

log(cos &)

R i x effective = R1,ix —
1

where « is the flip angle and Ty is the repetition time, and X denotes an arbitrary
compound (either S or P) [23]. However, when a variable flip angle sequence is
used, signal decay due to RF excitation must be accounted for as in Section 2.3.
This leads to a discrete time model for the transverse and longitudinal magnetization
immediately preceding excitation k given by

) =AY o) Do) £

where Ay and B, are computed from (2) assuming a zero order hold on the arterial
input. A model for the transverse magnetization immediately following excitation k
given by

Mxy,i,X [k] = sin Oox [k]Mz,i,X [k], (4)

which describes the observable outputs from voxel i at time k.
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4.2 Estimation of unknown model parameters

Estimating metabolic rate parameters 6; from experimental data collected from
voxel i involves minimizing a statistical loss function L(6;]Y;) that describes how
well a signal model fits the observed data ¥;. Using the model equations (3)—(4) as
the basis of a signal model describing the predicted measurement

i(6;) = [[Mayis[1] Myyip[1] ... Myyis[N] Myyip[N])

in terms of the vector model parameters 6;. Loss functions include:

e the least squares loss
L(6,|Y) = ||V = yi(0)]?

which corresponds to a nonlinear least squares estimation problem and
o the negative log likelihood loss

L(6:[Y;) = —log pg,(Yi)

which corresponds to a maximum likelihood estimation problem. Unlike the least
squares loss function, this loss requires a that a probability density function de-
scribing the joint distribution of ¥; be specified. Common choices are ¥; ~ y; + €
where € is independent, identically-distributed (iid) Gaussian noise or indepen-
dent Rician noise with location parameters given by y; [10].

5 Optimal Design of Dynamic Experiments

Two of the three problems we will discuss in this paper address the design of opti-
mized experiments for estimating the value of unknown parameters in a mathemat-
ical model of a dynamical system from noisy output data. Thus, in this section we
provide background on optimal experiment design.

In dynamical systems with noisy outputs, the reliability of the parameter esti-
mates depends on the choice of input used to excite the system, as some inputs
provide much greater information about the parameters than others. Much work
has been done on the optimal experiment design problem in the last 50 years
[8, 9, 14, 21, 25]. Historically, a great deal of work on this problem has taken a
frequency domain approach, where the input to the system is designed based on its
power spectrum. Here, we will approach this problem in the time domain, hoping to
be able to perform experiment design for systems with nonlinear dynamics.
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5.1 Problem Description

We consider a discrete-time dynamical system with noisy observations

Xt41 = f(t7xlautae)

5
Y, ~ P, &)

where x; € R" denotes the system’s state, u, € R™ is a sequence of inputs to be de-
signed and 0 € R? is a vector of unknown parameters that we wish to estimate. Ob-
servations are drawn independently from a known distribution that is parametrized
by the system state x,. We assume that for all x, € R" the probability distribution P,
is absolutely continuous with respect to some measure { and we denote its density
with respect to i by py, (). We consider this system over a finite horizon 0 <7 <N.
Our goal is to design a sequence u that provides a maximal amount of information
about the unknown parameter vector 0. This problem can be addressed by maxi-
mizing the Fisher information about 6.

5.2 Fisher Information

An important notion in frequentist statistics is the Fisher information matrix for the
vector of model parameters 0. The Fisher information is fundamental in the analysis
of numerous statistical estimators from unbiased estimation to maximum-likelihood
estimation. We begin with a definition.

Definition 1. Let &2 = {Py : 0 € Q} be a family of probability distributions parametrized
by 6 in an open set 2 C R” and dominated by some measure L. Denote the probabil-

ity densities with respect to i by pg and assume that the densities are differentiable
with respect to 8. We define the Fisher information matrix as the p x p matrix .#(0)
with (i, j)-th entry defined as

dlogpe(Y) dlogpe(Y)

j(e)i"i:E 00; 86,

where Y ~ Py.

5.3 The Cramér-Rao Inequality for Unbiased Estimators

The Cramér-Rao inequality provides a lower bound on the achievable covariance of
any unbiased estimator of 0 in terms of the Fisher information matrix.

Theorem 1 (Cramér-Rao Bound). Ler 6(Y) be any unbiased estimator of the pa-
rameter 6. Under the conditions that
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o .7(0) exists and is nonsingular
o ZU80IPa()dy] = [80) | F5po(y)|dy

the estimator O satisfies

cov(8(Y)) > 7(0)!

where A > B indicates that A — B is positive semidefinite.

5.4 Asymptotic distribution of the Maximum-Likelihood Estimator

Let Y' ...Y” be n random variables drawn independently from the probability dis-
tribution Py. Given that some mild regularity conditions are satisfied, as n — oo the
maximum-likelihood estimator

n
Ove = 1 Yh.
MLE = arg méix ; 0gPeo ( )

converges in distribution to a normal distribution with covariance .#(0)~!.

Theorem 2 (Asymptotics of the MLE). Suppose that

the MLE is consistent

po(Y) is bounded and C? in 0

7 (0) exists and is nonsingular

E[||logHg (Y)||] < e where H denotes the Hessian of pg(Y) with respect to 6.

Then \/n(Bye — 0) % N(0,.7(6)71) .

5.5 Scalar Measures of Positive Semidefinite Matrices

In order to use the Fisher information as an objective function for choosing an input
sequence u, we must choose a method of summarizing .# (0) by a scalar quantity.
We survey some of the most common choices here.

e Nonnegative linear functions
The most convenient class of objective functions are those that are linear func-
tions of the information matrix. For any positive semidefinite matrix K € RP*?
we can define the objective function

0(5) = tw(K.7).

Particular cases are the “T-optimal” design criterion (when K is the identity ma-
trix) and the c-optimal design criterion (when K = cc’ has rank 1), which is
optimal for the scalar parameter ¢’ 6.
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e Other convex functions
A number of other functions of the Fisher information matrix are also commonly
used as scalar measures of its size. Choices include:

- ¢p(F) =logdet(.#) know as “D-optimal design,”
- ¢5(F) = Amin(F) known as “E-optimal design”, and
— ¢a(F) = 1/tr(.#~") known as “A-optimal design.”

To understand the geometric meaning of each of these optimal design criteria,
consider an asymptotic confidence region associated with the MLE of 6. Such a
region is described by the ellipsoid & = {é n(0 — éMLE)TJ(é — éMLE) < g} for
some £ > 0. The volume of this ellipsoid is proportional to \/det(.# 1) and there-
fore the D-optimal design criterion corresponds to minimizing the volume of the
confidence ellipsoid & If the spectrum of .# is denoted 4, ...,4, then the length

of the axes of & are %, R ﬁ So the E-optimal design criterion corresponds
1 P

to minimizing the length of the longest axis of the confidence ellipsoid and the A-
optimal design criterion corresponds to minimizing the average squared length of
the confidence ellipsoid axes.

5.6 Optimizing Under Parametric Uncertainty

Given a particular scalar-valued function ¢ with which we will measure the size of
the Fisher information, the optimal experiment design problem is given by

maximize, ¢(.7(0))

subject to u € % . ©
for some set % of admissible signals. In general the objective ¢(.#(6)) depends
on the true value of the parameter 8 € 2, which is unknown to the experimenter.
Several approaches are commonly taken to address this problem.
The simplest approach, and the one that we will use, is to assume a nominal value
6y € Q for the model parameters and to solve the problem

maximize, ¢(.7(6))

. @)
subjectto uc % .

about this nominal value. This is referred to by some authors as “local design” [25],
though we will refer to it as “nominal design” and reserve the terms local and global
to refer to local and global solutions of the optimization problem. If multiple exper-
iments can be performed, this approach can also be extended to an iterative proce-
dure where we start with some nominal value of the parameter vector and design
an optimal experiment using this value. Data are then collected, a new value of the
parameter vector is estimated from the data, and then the experiment design is per-
formed again using the updated value of the parameter vector.
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Another approach is to consider a minimax criterion, solving the worst-case op-
timization problem

maximize, min¢(.#(0))
0cQ (8)
subjectto uc % .

This approach ensures a minimum level of estimator performance regardless of the
true value of 6.

Another alternative is to consider a prior distribution 7£(0) on the values that the
parameter vector may take. The experiment may then be designed with respect to
the average criterion

maximize, E;[¢(.7(0))]

. )
subjectto uc % .

6 Systems Theory Problems in Hyperpolarized Carbon-13 MRI

We now present three optimization problems that arise in the design of hyperpolar-
ized carbon-13 MRI experiments and the subsequent data analysis. The first involves
the design of substrate injection inputs to generate maximally informative data, a
problem in which the control input enters linearly. The second involves the design
of optimized flip angle sequences, again for generating maximally informative data.
In contrast with Problem 1, this problem involves a nonlinear control system model,
which is significantly more difficult to analyze globally. The third problem involves
estimating the spatial distribution of metabolic flux parameters from the acquired
data. Problem 3 completes the experimental sequence from experimental design to
data acquisition to data analysis.

Problem 1: Substrate Injection Design

Data collected in MRI experiments is typically noisy due to thermal movement of
electrons in the receiver coil and the object being imaged. This makes it challenging
to estimate model parameters from dynamic data sets when the signal to noise ratio
is small. This challenge can be addressed by designing experimental parameters
with the goal of maximizing the information about unknown parameters contained
in the data collected.

The first problem we consider is the optimal design of the injection input subject
to constraints on the maximum injection rate and volume. This results in an dy-
namic optimal experiment design problem of the form discussed in Section 5. More
formally, we consider the dynamic model defined in Equation (3) with an output
defined in Equation (4) which is corrupted by iid additive Gaussian noise. Problem
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1 is to design an injection input u[k] to maximize the Fisher information about the
parameter of interest ksp contained in the data generated from a finite number of
samples under this model. The input is constrained such that both the maximum
injection rate ||u||« and the maximum injection volume ||u||; are upper bounded by
some positive constant.

We first formulated this problem in [15], where it was shown that this problem
can be reformulated as a nonconvex quadratic program (QP). We then developed a
procedure for approximating the global solution of the QP using a semidefinite pro-
gramming relaxation. This method allowed us to compute approximate solutions to
realistic instances of this problem. We conjecture that all optimal solutions are of the
form found in this paper: a bolus applied at the beginning of the experiment injected
an the maximum rate until the volume budget is reached (Figure 5). However, this
conjecture remains unproven.

1
08
£
j=2]
306
Fig. 5 Conjectured solution @
to a particular instance of o4t
. . =]
Problem 1. The optimal input €
sequence u[k] applies a bolus 02
injection at the maximum
gllowable ratc? until the total % 1020 50w 0
input budget is reached. time (s)

Problem 2: Flip Angle Sequence Design

Similarly to the first problem, the second problem we consider involves designing
experimental parameters to maximize the Fisher information about unknown rates
in the model. Here we consider the problem of designing optimal RF flip angle
excitation sequences.

Again we use the model defined in Equation (3) with an output defined in Equa-
tion (4) corrupted by iid noise. In Problem 2, we wish to select a sequence of flip
angles ag[k] and aplk] used to excite each of the chemical species. Here the choice
of o [k] at each time is unconstrained. Since the flip angles enter the model in a
nonlinear fashion, the resulting optimization problem is no longer a QP, so other
optimization techniques must be used.

This problem is solved to local optimality under additional smoothness con-
straints in [16] using a nonlinear programming approach. However satisfactory
methods for computing a global optimum remain to be found.
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Problem 3: Constrained Parameter Mapping

The third problem involves computing maps of metabolic activity from the exper-
imental data collected. Here we assume that we are given a statistical model for
the data as well as a loss function, as described in Section 4.2. The challenge is
to summarize the spatial, temporal and chemical information contained in the dy-
namic experimental data into a single spatial map of metabolic activity. We do so
by estimating a value for the metabolic rate parameter 6; = kgp; for each voxel i in
space.

Since the objects imaged often contain spatial structure, this structure can be ex-
ploited to improve the quality of the estimated parameter maps. This can be achieved
by adding regularization to the objective function that is optimized. We solve an op-
timization problem of the form

minimize ) L(6;]Y;) +Ar(6)

where L is a loss function that depends on the data Y; collected in each voxel i,
and r is a regularization term that couples nearby voxels thereby enforcing spatial
structure in the estimated maps. Possible choices of regularization used to enforce
smoothness, sparsity and edge preservation include ¢», ¢ and total variation penal-
ties. By including such penalties to exploit spatial correlations in the data, we have
shown that better image quality can be achieved compared with independently fit-
ting each voxel [17].

Both choices of loss function described in Section 4.2 are nonconvex. However,
we have observed that despite the nonconvexity of the problem satisfactory solutions
can be found using convex optimization algorithms such as ADMM [3]. Problem 3
is to better understand the convergence of this algorithm for estimating parameters
in spatially-distributed dynamical system models. Why does this algorithm success-
fully converge to the same optimum for various initial conditions? And can we pro-
vide any formal guarantees of global convergence?
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