
Parallel dynamic programming for optimal experiment design
in nonlinear systems

John Maidens, Andrew Packard, and Murat Arcak

Abstract— We present a method of computing optimal input
trajectories for parameter estimation in nonlinear dynamical
systems using dynamic programming. In contrast with previ-
ously published dynamic programming formulations, we avoid
adding an equation for the dispersion to the system state,
allowing for more efficient solutions. This method is applicable
whenever the design metric is linear in the Fisher information
and is applicable to a general class of noise models. We
implement this algorithm in the Julia programming language,
and exploit parallelism to increase computation speed. A
motivating application for this investigation is the design of
dynamic acquisition sequences for magnetic resonance imaging
(MRI). We also benchmark the performance of our parallel
implementation on a low-dimensional population dynamics
model.

I. INTRODUCTION

In this paper, we consider the problem of designing an
experiment with the goal of estimating the parameters of
a discrete-time nonlinear system from noisy observations of
the system’s output. The accuracy and reliability of parameter
estimates in models of dynamical systems is dependent
on the sequence of inputs used to drive the system, thus
experimental design can be formulated as an optimal control
problem using a scalar measure of the Fisher information as
the objective function.

There is a significant body of literature on optimal exper-
iment design for parameter estimation [1]–[4]. Historically,
a great deal of this work has focused on linear dynamical
systems and Gaussian noise models, where the input to the
system is designed based on a frequency domain model
with constraints on the input power spectrum. Here, we will
approach this problem in the time domain, in order to be
able to perform experiment design for systems with nonlinear
dynamics. We show that for linear measures of the Fisher
information matrix, the design objective can be expressed as
a sum of stage costs for a new dynamic system augmented
with sensitivity equations. Thus this problem has the opti-
mal substructure required to allow us to formulate optimal
experiment design as a dynamic programming problem [5],
[6].

Dynamic programming formulations of optimal experi-
ment design problems have been presented previously for

J. Maidens and M. Arcak are with the Department of Electrical Engineer-
ing & Computer Sciences, University of California, Berkeley, 253 Cory Hall,
Berkeley, CA, 94720 USA e-mail: {maidens, arcak}@eecs.berkeley.edu.
A. Packard is with the Department of Mechanical Engineering, University
of California, Berkeley, 5116 Etcheverry Hall, Berkeley, CA, 94720 USA
email: pack@me.berkeley.edu. Research supported in part by NSERC
(Canada) postgraduate fellowship PGFD3-427610-2012, Amazon.com Inc.
under and AWS Educate grant, and the National Science Foundation under
grant ECCS-1405413.

aircraft model identification [7], [8]. We provide a broader
formulation applicable to nonlinear dynamics and non-
Gaussian noise models. We also avoid adding state equations
corresponding to the dispersion matrix by limiting the class
of metrics we consider to those that are linear in the Fisher
information, increasing the scalability of the method.

In Section II we formulate the optimal experiment design
problem and present the dynamic programming solution.
In Section III we describe the problem that motivated this
investigation: the design of optimized pulse sequences for
dynamic MRI acquisitions. In Section IV we present a low-
dimensional population dynamics model that shares some
important features with the MRI model, which we will use
to test and benchmark the implementation of our dynamic
programming algorithm. Next, we discuss issues related to
efficient parallelization of the algorithm in Section V. Finally,
in Section VI we present a solution to the motivating MRI
problem, achieved by running the dynamic programming
algorithm in parallel on Amazon Web Services EC2 servers.

Software to implement the algorithms presented, and re-
produce the figures from this paper is available at: https:
//github.com/maidens/CDC-2016.

II. DYNAMIC PROGRAMMING FOR OPTIMAL
EXPERIMENT DESIGN

We consider a discrete-time dynamical system with noisy
observations

xt+1 = f(xt, ut, θ)

Yt ∼ Pxt

(1)

where xt ∈ Rn denotes the system’s state, ut ∈ Rm is a
sequence of inputs to be designed and θ ∈ Rp is a vector of
unknown parameters that we wish to estimate. Observations
Yt ∈ Rp are drawn independently from a known distribution
Pxt

that is parametrized by the system state xt. We assume
that for all xt ∈ Rn the probability distribution Pxt is
absolutely continuous with respect to some measure µ and
we denote its density with respect to µ by pxt

. We further
assume that this density is differentiable with respect to the
parameter xt and define the Fisher information about the
state as

IYt
(xt) = Eθ

[(
∇xt

log pxt
(Yt)

)(
∇xt

log pxt
(Yt)

)T]
.

We consider this system over a finite horizon 0 ≤ t ≤ N .
Our goal is to design a sequence u that provides a maximal
amount of information about the unknown parameter vector
θ. Mathematically, we wish to choose u to maximize a

https://github.com/maidens/CDC-2016
https://github.com/maidens/CDC-2016

function of the Fisher information that the joint output Y =
(Y0, . . . , YN) carries about the parameter θ. A function φ is
chosen to be a measure of the “largeness” of the positive
semidefinite matrix I. Multiple choices for the function
φ have been proposed [9]; here we use φ(I) = tr(I)
(often called “T -optimal design”). In general this problem
is nonconvex as a function of u. However, since the trace is
linear, our objective function is additive and a global solution
can be found using dynamic programming.

Note that since the Fisher information is a function of the
true parameter value θ, the objective function for this optimal
control problem depends on θ which is unknown a priori.
There are several approaches to managing this uncertainty
including: minimax optimal design where u is chosen to
maximize the worst-case information among all values in
some set Θ, Bayesian optimal design where u is chosen
to maximize the expected information under some prior on
θ, and choosing a nominal value θ0 at which to maximize
the information. For the sake of simplicity, in this paper we
consider optimization about a nominal θ0.

The following result allows us to compute the Fisher
information about the parameter from the Fisher information
about the state sequence. A proof of this proposition is given
in the Appendix.

Proposition 1: Suppose that for all xt ∈ Rn the density
pxt is differentiable with respect to xt and that there exists a
µ-integrable function q with

∣∣∣∂pxt (y)

∂xt

∣∣∣ ≤ q(y) for all y ∈ Rp.
If f is C1 in xt and θ, then the Fisher information about the
parameter θ can be computed as

IY (θ) =

N∑
t=0

(∇θxt)TIYt(xt)(∇θxt) (2)

where ∇θxt denotes the Jacobian of xt with respect to θ.
Thus, for the T -optimal design criterion, the objective

function is given by

tr(IY (θ)) =

N∑
t=0

tr
(

(∇θxt)TIYt
(xt)(∇θxt)

)
. (3)

Applying the chain rule to (1), we get a dynamical system

∇θxt+1 = ∇θf(xt, ut, θ) +∇xf(xt, ut, θ) ∇θxt (4)

describing the time evolution of the sensitivities ∇θxt. The
dynamics (1) and (4) together with the cost function (3)
define a discrete-time finite-horizon optimal control problem
that can be solved via dynamic programming [5], [6]. In
particular, we define the sequence of value functions Jk via

JN (xN ,∇θxN) = tr
(

(∇θxN)TIYN
(xN)(∇θxN)

)
Jk(xk,∇θxk) = max

uk

{
tr
(

(∇θxk)TIYk
(xk)(∇θxk)

)
+ Jk+1

(
f(xk, uk, θ),∇θf(xk, uk, θ)

+ ∇xf(xk, uk, θ) ∇θxk
)}

.

(5)

If the control policy u∗k = µ∗k(xk,∇θxk) maximizes the right
hand side of (5) then u∗ is globally optimal.

Related approaches to the optimal experiment design prob-
lem appear in [7] and [8] for continuous-time dynamical
systems with Gaussian noise. However, a different objective
function φ is used and these approaches require appending
a nonlinear matrix differential equation for the dispersion
(the inverse of the Fisher information) to the system state in
addition to equation (4). By choosing the T -optimal design
criterion φ(I) = tr(I), we are able to avoid adding an
equation for the dispersion to the system state, allowing us
to efficiently solve problems of larger dimension.

III. MOTIVATING PROBLEM: DYNAMIC MRI
ACQUISITION

Magnetic resonance imaging (MRI) has traditionally fo-
cused on acquisition sequences that are static, in the sense
that sequences typically wait for magnetization to return to
equilibrium between acquisitions. Recently, researchers have
demonstrated promising results based on dynamic acqui-
sition sequences, in which spins are continuously excited
by a sequence of random input pulses, without allowing
the system to return to equilibrium between pulses. Model
parameters corresponding to T1 and T2 relaxation, off-
resonance and spin density are then estimated from the
sequence of acquired data. This technique, termed magnetic
resonance fingerprinting (MRF) has been shown to increase
the sensitivity, specificity and speed of magnetic resonance
studies [10], [11].

We believe that this technique could be further improved
by replacing randomized input pulse sequences with se-
quences that have been optimized for informativeness about
model parameters. To this end, we present a model of MR
spin dynamics that describes the measured data as a function
of T1 and T2 relaxation rates and the sequence of radio-
frequency (RF) input pulses, used to excite the spins.

We model the spin dynamics via the equations (6) (dis-
played on the following page) where x1,t describes the
longitudinal magnetization (parallel to the applied magnetic
field), and x2,t describes the magnitude of the transverse
magnetization (orthogonal to the applied magnetic field).
Phase and off-resonance are neglected in this model to limit
the state dimension. Control inputs ut describe flip angles
corresponding to RF excitation pulses that rotate the state
about the origin. Between acquisitions, transverse magne-
tization decays according to the parameter θ2 = e−∆t/T2

and the longitudinal magnetization recovers to equilibrium
(normalized such that the equilibrium is x = [1 0]T)
according to the parameter θ1 = e−∆t/T1 .

We assume data is acquired immediately following the
RF pulse, allowing us to make a noisy measurement of
the transverse magnetization magnitude. The observed data
Yt are assumed to be Rician-distributed [12] with location
parameter [0 1]xt and known scale parameter σ2, described
by the probability density given in (6). Here Iν denotes the
modified Bessel function of the first kind of order ν. The
Fisher information about xt corresponding to this distribution

xt+1 = f(xt, ut, θ) =

[
cosut − sinut
sinut cosut

]([
θ1 0
0 θ2

]
xt +

[
1− θ1

0

])
pxt

(y) =
y

σ2
exp

(
−
y2 + x2

2,t

2σ2

)
I0

(yx2,t

σ2

) (6)

is given by

IYt
(xt) =

1

σ2
ψ

(
[0 1]xt

σ

)
where ψ(z) = −z2 +

∫∞
0
y3 I

2
1 (yz)
I0(yz) exp

(
− 1

2 (y2 + z2)
)
dy

(see [13] for a derivation). This integral cannot be com-
puted analytically, but is one-dimensional and parameter-
independent, thus it can easily be evaluated numerically.

We see from the model (6) that magnetization in the
transverse direction decays while magnetization in the lon-
gitudinal direction increases. However only the transverse
component of the magnetization can be measured. Thus there
is a trade-off between making measurements (which leads
to loss of magnetization) and magnetization recovery. This
is the trade-off that we hope to manage through optimal
experiment design.

It should be noted that for system (6), the objective
function tr(IY (θ)) has many local optima as a function
of the input sequence u. Thus, in contrast with [13], [14]
which consider optimal experiment design for hyperpolarized
MRI problems, for this model, local search methods provide
little insight into what acquisition sequences are good. In
contrast with the MRI model presented in [15], where global
search heuristics are applied, in this model the dynamics are
nonlinear with respect to the decision variables ut. Therefore,
we must attempt to optimize this objective function via the
general dynamic programming formulation given in Section
II. The results of this study are discussed in Section VI.

IV. LOW-DIMENSIONAL BENCHMARK PROBLEM

In this section, we present a low-dimensional problem that
is analogous to the MRI problem presented in Section III in
the sense that it captures a trade-off between immediate and
future signal strength than can be directly controlled via a
sequence of inputs. We will use this problem in Section V
to benchmark our dynamic programming implementation and
to illustrate issues related to parallelization.

We consider a population of fruit flies, whose dynamics are
assumed to evolve according to the discrete logistic equation

xt+1 = xt + θxt(K − xt).

We want to design an experiment to estimate the reproduction
rate θ, assuming a known carrying capacity K. To generate
experimental data, we place a sequence of traps into the
fly cage, each capturing a fraction ut of the current fly
population. By measuring the number of fruit flies caught
in the trap, we wish to infer θ. The optimization problem
thus consists of choosing the size of the traps (and hence
the proportion of flies trapped) at each sampling interval.

This leads to a model for the population dynamics together
with the number of fruit flies trapped Yt

x0 = K

xt+1 = xt(1− ut) + θxt(1− ut)(K − xt(1− ut))
Yt ∼ Poisson(xtut).

(7)

For this problem, we approximate the functions Jk by
evaluation on a state grid of size 50 × 50 and input grid
of size 100. We assume that K = 1000 and optimize about
the nominal parameter value θ0 = 5 × 10−4. The optimal
inputs computed are plotted in Figure 1a. The corresponding
state trajectory is shown in Figure 1b.

(a) Optimal input trajectory for (7) computed using
dynamic programming

(b) State trajectory corresponding to the input given
in Figure 1a

Fig. 1: Numerically-computed solution to the optimal exper-
iment design problem defined by (7)

We see that the optimal observation scheme is to first
capture a large fraction u1 = 0.9795 of the flies, which drives
the population to a low level thereby limiting the effect of
growth saturation due to the carrying capacity. After this, we
capture a fraction ut ≈ 0.32 of the flies, just enough to keep
the population constant. This provides maximal sensitivity

to the growth rate θ in a neighbourhood of θ0. Indeed, if
θ > θ0 we will see the the population of flies grow over
time, whereas if θ < θ0 the population will shrink.

V. PARALLEL IMPLEMENTATION

When the number of state variables and/or parameters is
large, the number of points at which we must compute the
value functions Jk becomes prohibitively large. However, the
value of Jk at a particular grid point (x,∇θx) depends only
on Jk+1 and not the value of Jk elsewhere on the grid. Thus
the evaluation of Jk on the grid can be performed entirely
in parallel.

A. Low-dimensional benchmarks

In this section, we implement this parallelism via the map
pattern [16], which applies the function Jk to all points on the
state space grid. Distributing this task to multiple processors
can then be handled automatically by the programming
environment.

We present a comparison of implementations of dynamic
programming for optimal experiment design. We use the
algorithm to compute the value function sequence Jk for
the population dynamics benchmark model given in Section
IV. To compute Jk, we approximate the value function Jk+1

from the previous iteration by linear interpolation between
grid points. We compare the following four implementations:
• a serial implementation in the Julia language,
• a parallel implementation in the Julia language run with

a single worker,
• a parallel implementation in the Julia language run

with three workers (with shared memory on a single
multicore machine).

• a parallel implementation in the Julia language run with
31 workers (with shared memory on a single multicore
machine, when applicable).

Simulations are performed on
• a Macbook laptop (2.3 GHz quad-core Intel Core i7 Ivy

Bridge processor, 8GB memory) and
• an Amazon Web Services (AWS) Elastic Compute

Cloud (EC2) cc2.8xlarge instance (2.59 GHz 32
vCPU machine with two Intel Xeon E5-2670 Proces-
sors, 60GB memory).

Code to run the simulations is available at https://
github.com/maidens/CDC-2016. A comparison of
the running times are given in Table I for a problem solved
on a (state 1) × (state 2) × (input) grid of 50 × 50 × 100 =
250,000 points and in Table II on a grid of 5 × 5 × 10000
= 250,00 points.

The results for the 50 × 50 × 100 grid are unexpected as
the serial implementation in Julia runs faster than any of the
parallel implementations. This is not the case for the same
problem solved on a 5 × 5 × 10000 grid which contains the
same total number of grid points, but distributed differently
between the state and input grids. We see that the two grids
lead to similar running times when run in serial, but very
different running times when run in parallel. We will explore
the source of this discrepancy in the next section.

B. Parallelism and data blocking

The Julia programming language implements parallelism
via one-sided message passing based on remote references
and remote calls [17]. The architecture of a simple parallel
program running on a machine with n+ 1 cores is shown in
Fig. 2. One processor core acts as a coordinator in charge of
assigning remote function calls to be evaluated by each of n
worker processor cores.

Coordinator

Workers

Task 1 Task 2 Task nTask n-1

...

...
Worker 1 Worker 2 Worker n-1 Worker n

remotecall_fetch()

Fig. 2: Implementation architecture of the parallel map
function in Julia

If the amount of time that a worker requires to evaluate
the remote call is large (i.e. greater than by a factor of n)
compared with the time it takes for the coordinator to manage
that function call, then we expect to be able to achieve
nearly a factor of n speedup in computation. However, if
each function call can be evaluated relatively quickly, then a
coordination bottleneck can occur, limiting the speedup that
can be achieved via parallelization.

We can overcome this limitation by grouping data such
that each worker is assigned an entire block of data to process
each time that a remote call is initiated. In Fig. 3 we plot
the running time of the dynamic programming algorithm as
a function of data block size. We see that the size of the
blocks has a very significant effect on the algorithm’s speed.
When the group size is small, each function call is very fast
and a coordination bottleneck occurs, slowing the algorithm
significantly. When the group size is too large then some
CPUs sit idle, also slowing the algorithm. But by choosing
an appropriate group size, a speedup on the order of 24×
can be achieved.

VI. SOLUTION TO THE MOTIVATING MRI PROBLEM

In this section, we present a solution to the motivating
problem introduced in Section III. We consider the case of
designing a flip angle sequence that is maximally informative
about the T1 relaxation rate, assuming that T2 is known.

The value function and corresponding optimal control
input are computed using a state grid of size 20 × 20
× 30 × 30 and input grid of size 62 (−π ≤ ut ≤ π
with ∆ut = 0.1), with parallelization implemented using
a synchronous parallel for loop, taking care to block data
appropriately to ensure parallel speedup. The computation is

https://github.com/maidens/CDC-2016
https://github.com/maidens/CDC-2016

Julia serial Julia parallel – 1 worker Julia parallel – 3 workers Julia parallel – 31 workers
Macbook time 8.22 s 40.1 s 15.3 s Not
(4 vCPU) memory 2.362 GB 4.263 GB 4.266 GB Applicable

EC2 time 7.41 s 37.7 s 14.0 s 13.8 s
(32 vCPU) memory 2.361 GB 3.707 GB 3.683 GB 3.690 GB

TABLE I: Run time comparison of three implementations of dynamic programming for optimal experiment design computed
on a state grid of 50× 50 points and an input grid of 100 points.

Julia serial Julia parallel – 1 worker Julia parallel – 3 workers Julia parallel – 31 workers
Macbook time 7.33 s 9.13 s 3.06 s Not
(4 vCPU) memory 2.308 GB 58.308 MB 31.833 MB Applicable

EC2 time 7.38 s 8.66 s 2.84 s 1.29 s
(32 vCPU) memory 2.322 GB 46.887 MB 25.960 MB 29.208 MB

TABLE II: Run time comparison of three implementations of dynamic programming for optimal experiment design computed
on a state grid of 5× 5 points and an input grid of 10000 points.

Group SizeGroup Size

20 25 210 215
20

21

22

23

24

25

26

Co
m

pu
ta

tio
n

Ti
m

e
(s

)
Co

m
pu

ta
tio

n
Ti

m
e

(s
)

Fig. 3: Comparison of running time as a function of group
size for dynamic programming for optimal experiment design
computed on a state grid of 128×128 points and an input grid
of 100 points. Computations are performed on an Amazon
EC2 c4.8xlarge instance (with 36 vCPUs).

performed on an 32 vCPU cc2.8xlarge EC2 instance,
which for a horizon of N = 30 samples has a runtime
of 683.3 seconds. The optimal flip angle sequence resulting
for the dynamic programming algorithm, assuming that this
system is initialized at the equilibrium x0 = [1 0]T ,
∇θ1x0 = [0 0]T , is shown in Fig. 4. The corresponding
state trajectory is plotted in Fig. 5.

timetime

0 10 20 30
-200

-100

0

100

200

uu tt (d
eg

re
es

)
 (d

eg
re

es
)

Fig. 4: Optimized flip angle input sequence

We see that the maximally informative control law con-
verges to a repeating sequence of period 5. This is an

Transverse magnetizationTransverse magnetization

-0.1 0.0 0.1 0.2 0.3 0.4 0.5
-0.5

0.0

0.5

1.0

Lo
ng

itu
di

na
l m

ag
ne

tiz
at

io
n

Lo
ng

itu
di

na
l m

ag
ne

tiz
at

io
n

Fig. 5: State trajectories corresponding to optimized flip
angle sequence. The state is initialized at the equilibrium
x0 = [1 0] and is driven by the control input to a periodic
trajectory.

interesting behavior that warrants further study. It is possible
that such periodic pulse sequences could be used to develop
highly-sensitive dynamic MRI acquisition methods.

To confirm that the optimized pulse sequence leads to
more accurate parameter estimates than a random pulse
sequence, we compare the result of maximum likelihood
estimates of θ1 between the two pulse sequences. This com-
parison is shown in Fig. 6 for a sample of 1000 estimation
experiments. We see that the estimates resulting from the
optimized input sequence have lower bias and lower variance
than those corresponding to the random sequence.

VII. CONCLUSION

We have shown that dynamic programming can be used to
design globally optimal input trajectories for estimating pa-
rameters in nonlinear dynamical systems with non-Gaussian
noise models. The execution speed of the algorithm can be
increased through parallelization, though it is necessary to

parameter estimate errorparameter estimate error

-0.4 -0.3 -0.2 -0.1 0.0 0.1

Random
Optimal

Flip angle sequenceFlip angle sequence

0

100

200

300

400

fr
eq

ue
nc

y
fr

eq
ue

nc
y

Fig. 6: Histogram of θ1 parameter estimates compared be-
tween a random input and a sequence optimized using our
dynamic programming algorithm. Our algorithm leads to
more accurate estimates of the model parameter.

carefully coordinate parallel processes to prevent bottlenecks.
This algorithm has enabled us to compute an optimized pulse
sequence for a dynamic MRI acquisition problem that has so
far been intractable using existing methods.

To enable these results to scale to higher-dimensional
systems, in the future we would like to explore more efficient
models for interpolating the value function such as neural
networks [18] and Kriging models [19], [20].

APPENDIX
PROOF OF PROPOSITION 1

Proof: First, note that the hypotheses of this propo-
sition provide sufficient regularity to exchange the order of
differentiation with respect to θi and integration with respect
to yt. Therefore for all i = 1, . . . , p and t = 0, . . . , N

Eθ
[
∂ log pθ(Yt)

∂θi

]
=

∫
∂ log pθ(yt)

∂θi
pθ(yt)dµ(yt)

=

∫
∂pθ(yt)

∂θi
dµ(yt)

=
∂

∂θi

∫
pθ(yt)dµ(yt)

=
∂

∂θi
1 = 0.

Now for all i, j = 1, . . . , p we can compute the (i, j)-th entry
of Iθ(Y) as

IY (θ)i,j = Eθ
[
∂ log pθ(Y)

∂θi

∂ log pθ(Y)

∂θj

]
= Eθ

[(
N∑
t=0

∂ log pθ(Yt)

∂θi

)(
N∑
s=0

∂ log pθ(Ys)

∂θj

)]

=

N∑
t=0

Eθ
[
∂ log pθ(Yt)

∂θi

∂ log pθ(Yt)

∂θj

]

+

N∑
t=0

N∑
s=0,s 6=t

Eθ
[
∂ log pθ(Yt)

∂θi

]
Eθ
[
∂ log pθ(Ys)

∂θj

]

=

N∑
t=0

Eθ
[
∂ log pxt(θ)(Yt)

∂θi

∂ log pxt(θ)(Yt)

∂θj

]

=

N∑
t=0

Eθ
[
〈∂xt
∂θi

,∇xt
log pxt

(Yt)〉〈
∂xt
∂θj

,∇xt
log pxt

(Yt)〉
]

=
N∑
t=0

∂xt
∂θi

T

Eθ
[(
∇xt log pxt(Yt)

)(
∇xt log pxt(Yt)

)T] ∂xt
∂θy

=

N∑
t=0

∂xt
∂θi

T

IYt
(xt)

∂xt
∂θy

.

So

IY (θ) =

N∑
t=0

(∇θxt)TIYt
(xt)(∇θxt).

REFERENCES

[1] M. Gevers, X. Bombois, R. Hildebrand, and G. Solari, “Optimal
experiment design for open and closed-loop system identification,”
Communications in Information and Systems, vol. 11, no. 3, pp. 197–
224, 2011.

[2] G. Goodwin and R. Payne, Dynamic System Identification: Experiment
Design and Data Analysis. Academic Press, 1977.

[3] L. Ljung, System Identification: Theory for the User. Pearson
Education, 1999.

[4] É. Walter and L. Pronzato, Identification of parametric models from
experimental data, ser. Communications and control engineering.
Springer, 1997.

[5] R. Bellman, Dynamic Programming. Princeton University Press,
1957.

[6] D. P. Bertsekas, Dynamic Programming and Optimal Control, Volume
1. Athena Scientific, 1995.

[7] R. T. N. Chen, “Input design for aircraft parameter identification:
Using time-optimal control formulation,” in Methods for Aircraft State
and Parameter Identification, Advisory Group for Aerospace Research
and Development (AGARD), Conference Proceedings no. 172, 1975.

[8] E. A. Morelli and V. Klein, “Optimal input design for aircraft
parameter estimation using dynamic programming principles,” in AIAA
Atmospheric Flight Mechanics Conference paper 90-2801, 1990.

[9] F. Pukelsheim, Optimal Design of Experiments. Society for Industrial
and Applied Mathematics, 2006.

[10] D. Ma, V. Gulani, N. Seiberlich, K. Liu, J. L. Sunshine, J. L. Duerk,
and M. A. Griswold, “Magnetic resonance fingerprinting,” Nature, vol.
495, no. 7440, pp. 187–192, 03 2013.

[11] M. Davies, G. Puy, P. Vandergheynst, and Y. Wiaux, “A compressed
sensing framework for magnetic resonance fingerprinting,” SIAM
Journal on Imaging Sciences, vol. 7, no. 4, pp. 2623–2656, 2014.

[12] H. Gudbjartsson and S. Patz, “The Rician distribution of noisy MRI
data,” Magnetic Resonance in Medicine, vol. 34, no. 6, pp. 910–914,
1995.

[13] J. Maidens, P. E. Z. Larson, and M. Arcak, “Optimal experiment design
for physiological parameter estimation using hyperpolarized carbon-13
magnetic resonance imaging,” in Proceedings of the American Control
Conference (ACC), 2015, pp. 5770–5775.

[14] J. Maidens, J. W. Gordon, M. Arcak, and P. E. Z. Larson, “Optimizing
flip angles for metabolic rate estimation in hyperpolarized carbon-13
MRI,” IEEE Transactions on Medical Imaging, 2016, to appear.

[15] J. Maidens and M. Arcak, “Semidefinite relaxations in optimal exper-
iment design with application to substrate injection for hyperpolarized
MRI,” in Proceedings of the American Control Conference (ACC),
2016, to appear.

[16] M. McCool, J. Reinders, and A. Robison, Structured Parallel Pro-
gramming: Patterns for Efficient Computation. Morgan Kaufmann,
2012.

[17] Julia Language Documentation, “Parallel computing,” http:
//docs.julialang.org/en/release-0.4/manual/parallel-computing/,
accessed: 2015-03-11.

[18] D. P. Bertsekas and J. Tsitsiklis., Neuro-Dynamic Programming.
Athena Scientific, 1995.

[19] D. Krige, “A statistical approach to some basic mine valuation prob-
lems on the Witwatersrand,” Journal of the Chemical, Metallurgical
and Mining Society of South Africa, no. 52, 1951.

[20] N. Cressie, Statistics for spatial data, ser. Wiley series in probability
and mathematical statistics: Applied probability and statistics. J.
Wiley, 1993.

http://docs.julialang.org/en/release-0.4/manual/parallel-computing/
http://docs.julialang.org/en/release-0.4/manual/parallel-computing/

	Introduction
	Dynamic programming for optimal experiment design
	Motivating problem: Dynamic MRI acquisition
	Low-dimensional benchmark problem
	Parallel Implementation
	Low-dimensional benchmarks
	Parallelism and data blocking

	Solution to the Motivating MRI Problem
	Conclusion
	Appendix: Proof of Proposition 1
	References

