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Reachability analysis of nonlinear systems
using matrix measures
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Abstract—Matrix measures, also known as logarithmic norms, have
historically been used to provide bounds on the divergence of trajectories
of a system of ordinary differential equations. In this paper we use them to
compute guaranteed overapproximations of reachable sets for nonlinear
continuous-time systems using numerically simulated trajectories and to
bound the accumulation of numerical simulation errors along simulation
traces. Our method employs a user-supplied bound on the matrix measure
of the system’s Jacobian matrix to compute bounds on the behaviour of
nearby trajectories, leading to efficient computation of reachable sets
when such bounds are available. We demonstrate that the proposed
technique scales well to systems with a large number of states.

I. INTRODUCTION

Given a nonlinear dynamical system

ẋ = f(t, x) (1)

with f : [0,∞) × Rn → Rn continuous in t and C1 in x, and a
bounded set of initial states, we consider the problem of computing
an overapproximation of the set of states reachable from these initial
states in finite time. Computing such sets allows finite-time safety
specifications to be verified by demonstrating that no trajectory of
the system originating from a given set of initial conditions can
reach a set of states labeled “unsafe.” Existing approaches to this
problem include level set methods [1], generating linear or piecewise
linear models approximating the nonlinear dynamics for which linear
reachability techniques can be applied [2], [3], methods based on
simulation relations [4], [5], interval Taylor series methods [6], [7],
differential inequality methods [8], [9], and numerical simulation-
based approaches [10], [11], [12], [13]. Simulation-based approaches
have the advantage that numerical simulation is a relatively inexpen-
sive operation, even for systems with a large number of states. Thus
unlike the more computationally expensive approaches, they have the
potential to scale well with state dimension.

Simulation-based methods have further advantages: first, if the
method fails to compute a reachable set accurate enough to verify
a given safety property, they provide information about the regions
of the state space that require additional simulations to be performed
before safety can be verified or an unsafe trajectory generated.
Therefore these approaches can lead to iterative schemes for safety
verification, such as the one presented in [10]. In addition, simulation-
based approaches are naturally parallelizable due to the fact that sim-
ulations and expansion bounds for each initial condition considered
can be computed independently. Finally, numerical simulation is a
common method used in industrial practice to search for undesirable
behaviours of a modelled system. Thus formal verification methods
that leverage simulation have the potential for wide adoption.

We consider a simulation-based approach where we first sample a
number of trajectories of the system and next establish a bound on
the divergence between the samples and neighbouring trajectories. In
particular we use a user-supplied bound on the matrix measure to
generate a bound on this divergence. Unlike [10] which also takes
a simulation-based approach but is not able to guarantee that the
computed approximation contains the true reachable set, here we
provide a guaranteed overapproximation of the set of reachable states.
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Thus our technique can be used to provide formal guarantees of
safety. Another related method is [13] which uses finite-time invariant
sets computed using sum-of-squares methods to bound the divergence
of trajectories. We provide a comparison of our method with this
approach in Section V.

We begin by surveying existing results related to matrix measures
in Section II. In Section III we demonstrate that our matrix measure
approach to nonlinear reachability analysis provides a guaranteed
overapproximation of the set of reachable states of the system.
The approximation can be made arbitrarily accurate by choosing a
sufficiently fine mesh of initial states. We then provide a method of
improving the accuracy of the approximation by weighting matrix
measures in an optimal manner. In Section IV we use the matrix
measure for analysing the accumulation of numerical errors along
simulated trajectories of the system. Finally, in Section V we demon-
strate our method on a model of a relaxation oscillator taken from
[14] and a model of a biological transcription cascade from [15].

II. OVERVIEW OF MATRIX MEASURES AND CONTRACTION

Let | · | be a norm on Rn and ‖ · ‖ be its induced norm on the set
of real matrices of dimension n× n. The measure µ(A) of a matrix
A ∈ Rn×n is the one-sided derivative of ‖ · ‖ at I ∈ Rn×n in the
direction A

µ(A) = lim
t→0+

‖I + tA‖ − ‖I‖
t

. (2)

This limit is guaranteed to exist for any norm | · | and A ∈ Rn×n
(see [16]). The following properties of µ are of interest to us [16],
[17].

1) For all eigenvalues λi(A) of A we have −‖A‖ ≤ − µ(−A) ≤
<(λi(A)) ≤ µ(A) ≤ ‖A‖.

2) µ(cA) = cµ(A) for all c ≥ 0.
3) µ(A+B) ≤ µ(A) + µ(B).
4) If P ∈ Rn×n is nonsingular then the measure µP of the norm
|x|P = |Px| is given in terms of µ by µP (A) = µ(PAP−1).

Some familiar vector norms as well as their corresponding induced
matrix norms and measures are given in Table I.

TABLE I
COMMONLY USED VECTOR NORMS AND THEIR CORRESPONDING MATRIX

NORMS AND MEASURES

Vector norm Induced matrix norm Induced matrix measure

|x|1 =
∑
j |xj | ‖A‖1 = maxj

∑
i |aij | µ1(A) = maxj

(
ajj +

∑
i 6=j |aij |

)
|x|2 =

√∑
j x

2
j ‖A‖2 =

√
maxj λj(ATA) µ2(A) = maxj

1
2

(
λj(A+AT )

)
|x|∞ = maxj |xj | ‖A‖∞ = maxi

∑
j |aij | µ∞(A) = maxi

(
aii +

∑
j 6=i |aij |

)

The matrix measure has long been used to provide estimates on
solutions of systems of ordinary differential equations [16], [17], [18],
[19], [20]. The following proposition allows us to bound the distance
between trajectories in terms of their initial distance and the rate of
expansion of the system given by the measure of the Jacobian matrix
J(t, x) with respect to x.

Proposition 1: Let D ⊆ Rn and let the Jacobian J(t, x) =
∂f
∂x

(t, x) satisfy µ(J(t, x)) ≤ c for all (t, x) ∈ [0, T ] × D. If
every trajectory of (1) with initial conditions in the line segment
{hx0 + (1 − h)z0 : h ∈ [0, 1]} remains in D until time T then the
solutions ξ(t) and ζ(t) with ξ(0) = x0 and ζ(0) = z0 satisfy

|ξ(t)− ζ(t)| ≤ |ξ(0)− ζ(0)|ect. (3)

for all t ∈ [0, T ].
The proof of Proposition 1 is given in [20] emphasizing the case
that c < 0. It holds for any c ∈ R following the same argument.
The proposition provides global results about the divergence between
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trajectories of (1) using only information about the system’s Jacobian
at each point.

If there exists c < 0 such that for all (t, x) ∈ [0,∞) × D we
have µ(J(t, x)) ≤ c then the system (1) or the vector field f(t, x)
is said to be contracting with respect to | · |. From (3) it follows
that for such systems any two trajectories converge asymptotically.
Unlike the literature on contractive or incrementally stable systems
[20], [21], [22] which deals primarily with the case where c < 0, our
results allow the expansion rate c to be positive.

III. OVERAPPROXIMATION OF REACHABLE SETS

Given a compact initial set K and final time T we wish to
find a set R such that all trajectories ξ(·, x0) of (1) with initial
condition ξ(0, x0) = x0 ∈ K satisfy ξ(T, x0) ∈ R . To simplify the
presentation, we assume throughout Section III that trajectories of (1)
can be computed exactly. In Section IV we will extend the results
presented here to ensure that numerical inaccuracies due to floating
point arithmetic and discretization of the continuous dynamics are
accounted for.

Before continuing, we introduce the required notation. The ball
with radius ε and centre x0 is given by {x : |x − x0| ≤ ε}
and is denoted Bε(x0). Throughout, we denote the solution to the
differential equation (1) with initial condition x0 as ξ(t, x0), or
when it is clear that we have fixed a particular initial condition
x0, simply as ξ(t). The set reachable at time t from initial set
S is denoted Reacht(S) and is defined as {ξ(t, x) : x ∈ S}.
The tube reachable from the initial set S over an interval [0, t]
is denoted Reach[0,t](S) = {ξ(s, x) : s ∈ [0, t], x ∈ S}. For
symmetric matrices A and B, the inequality A � B means that
B − A is positive semidefinite and A ≺ B means that B − A
is positive definite. For a set X ⊆ Y , the error with which Y
overapproximates X can be quantified via the Hausdorff distance
d(X,Y ) = supy∈Y infx∈X |x− y|.

A. Basic Algorithm

We begin by covering the initial set K by a finite number of norm
balls Bεk (xk). The set reachable from K is contained in the union of
the sets reachable from these norm balls. The number of balls can be
chosen so as to achieve the required accuracy in the approximation
of the reachable set; a larger number of balls provides a more
accurate approximation, while covering K by a single ball reduces
computation time at the cost of reduced accuracy. The computation
of the set reachable from each norm ball can be performed in parallel,
thus we assume without loss of generality that the initial set is given
by a single norm ball K = Bε(x0).

In light of Proposition 1, given a global bound c on µ(J(t, x)), we
know that all trajectories of (1) with initial conditions in Bε(x0) lie
in BεecT (ξ(T, x0)). Since a global bound c on the expansion rate is
far too conservative, we provide an iterative method for computing a
more accurate approximation based on a local bound on the expansion
rate. We begin with the following corollary of Proposition 1.

Corollary 1: Let the Jacobian J(t, x) of f(t, x) with respect
to x satisfy µ(J(t, x)) ≤ ci for all (t, x) ∈ [ti, ti+1] ×
Reach[ti,ti+1](Bδi(ξ(ti))). Then any solution ζ of (1) with ζ(ti) ∈
Bδi(ξ(ti)) satisfies

|ξ(ti+1)− ζ(ti+1)| ≤ |ξ(ti)− ζ(ti)|eci(ti+1−ti). (4)

Thus given a sequence of local bounds ci we can compute a
guaranteed overapproximation of ReachT (Bε(x0)) as Bδ(ξ(T, x0))
where

δ =

(
N−1∏
i=0

eci(ti+1−ti)

)
ε.

The set Reach[ti,ti+1](Bδi(ξ(ti))) is generally not known, but a
crude overapproximation will suffice for the purpose of computing
the constant ci. For example if we can find some crude bound S
on Reach[0,T ](K) (for example an invariant set containing K) such
that |f(t, x)| ≤M for all t ∈ [0, T ] and all x ∈ S then we have the
containment

Reach[ti,ti+1](Bδi(ξ(ti))) ⊆ Bδi+M(ti+1−ti)(ξ(ti)).

Note that once an overapproximation of the reach set is computed
using our method, this bound can then be used to recompute a
smaller M and the method reapplied to generate an even tighter
approximation. Our method is described in Algorithm 1.

Algorithm 1 Basic algorithm for bounding ReachT (K)

Require: Initial ball size ε > 0, bound M on magnitude of vector field
f , sequence of simulation points xi := ξ(ti) for i = 0, . . . , N .

1: Set δ0 = ε

2: for i from 0 to N − 1 do
3: Compute upper bound ci on expansion rate µ(J(t, x)) within the

set with
4: ti ≤ t ≤ ti+1 and |x− xi| ≤ δi +M(ti+1 − ti).
5: Set δi+1 = eci(ti+1−ti)δi
6: end for
7: return BδN (xN )

Corollary 1 ensures that Algorithm 1 yields an overapproximation
of the set of reachable states. The following additional corollaries
of Proposition 1 provide information about the tightness of this
approximation. Corollary 2 establishes that the approximation can be
made arbitrarily accurate by covering the initial set K by a collection
of balls of sufficiently small radius. Corollary 3 establishes that for
contractive systems, a single ball overapproximating the initial set
K is sufficient to generate an approximation that becomes arbitrarily
tight as T →∞.

Corollary 2 (Tightness as a function of mesh size): Let D ⊆ Rn
and let the Jacobian J(t, x) of f with respect to x satisfy
µ(J(t, x)) ≤ c for all (t, x) ∈ [0,∞)×D. Then the approximation
error d(Reacht(Bε(x0)),Bectε(ξ(t, x0))→ 0 linearly as ε→ 0.

Corollary 3 (Asymptotic tightness for contractive systems):
Let D ⊆ Rn and let f satisfy µ(J(t, x)) ≤ c < 0 for
all (t, x) ∈ [0,∞) × D. Then the approximation error
d(ReachT (Bε(x0)),BecT ε(ξ(T, x0))) → 0 exponentially as
T →∞.
Note that covering a set S ⊆ Rn by a uniform mesh of radius ε
requires Θ(ε−n) mesh points and hence the practical applicability
of these tightness results is limited. However, methods exist in the
literature for choosing non-uniform meshes of trajectories to simulate
(e.g. Section 3 of [10]) which help alleviate this problem.

B. Algorithm with norm updating

We now provide a modified scheme that allows us to optimize the
norm in which the expansion is measured at a given time and state
(t, x). We consider a family of weighted norms {| · |Γ} parametrized
by weights Γ from some set of real n× n matrices. Given an initial
set Bi described as a norm ball of | · |Γi we
• overapproximate the initial ball Bi by a ball B̄i in some new

norm | · |Γi+1

• compute an expansion rate ci+1 at the point (ti, xi) satisfying
ci+1 ≥ µΓi+1(J(ti, xi)) where µΓi+1 is the matrix measure
induced by | · |Γi+1 (Recall that µΓ can be computed in terms
of µ via Property 4 from Section II.)

• compute an overapproximation of the set reachable form B̄i
using the expansion rate ci+1. This gives the new set Bi+1.
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It may appear that Γi+1 should be selected to minimize ci+1.
However there is a tradeoff between how small we can make ci+1

and how tightly B̄i approximates Bi. Thus, at each step we choose
Γi+1 such that the volume vol(Bi+1) is minimized:

minimize vol(Bi+1)

subject to Bi ⊆ B̄i (5)

µΓi+1(J(ti, xi)) ≤ ci+1.

For certain families of norms, this can be formulated as an optimiza-
tion problem that is convex in the weighting Γ. We now describe
three such cases.

1) Euclidean norms weighted by positive definite matrices: We
consider the family of weighted Euclidean norms of the form x 7→
|Px|2 where P is a positive definite matrix. There is a one-to-one
correspondence between such norms and their unit balls, described
by the nondegenerate ellipsoid {x : xTΓx ≤ 1} and parametrized
by Γ = P 2 from the set of positive definite matrices.

The following proposition relates Γ with the expansion rate of (1)
at (t, x).

Proposition 2 (Lemma 2.2 of [23]): If ΓJ(t, x) + J(t, x)TΓ ≤
2cΓ where Γ is a positive definite matrix then µ(J(t, x)) ≤ c in
the norm x 7→ |Px|2 where P = Γ1/2 � 0.

If Bi = {x : xTΓix ≤ 1} and B̄i = {x : xTΓi+1x ≤ 1} then the
constraint Bi ⊆ B̄i can be expressed in terms of the parameters as
Γi+1 � Γi.

The set reachable from {xi + x : xTΓi+1x ≤ 1} is approximated
by {xi+1 + x : xTΓi+1x ≤ e2c(ti+1−ti)} where ci+1 satisfies
Γi+1J(ti, xi) + J(ti, xi)

TΓi+1 ≤ 2cΓi+1. We wish to choose
Γi+1 so as to minimize the volume of the computed reach set
Bi+1 = {xi+1 +x : xTΓi+1x ≤ e2c(ti+1−ti)}. As the volume of the
ellipsoid {x : xTΓx ≤ 1} is proportional to det(P−1), the volume
vol(Bi+1) is proportional to 1√

det(e
−2c(ti+1−ti)Γi+1)

. Problem (5)

can now be cast as the following convex problem:

minimize −e−2c(ti+1−ti) det(Γi+1)1/n

subject to Γi+1 � Γi (6)

Γi+1J(ti, xi) + J(ti, xi)
TΓi+1 � 2cΓi+1.

For fixed c ∈ R this is a convex problem in the variable Γi+1. Thus a
solution can be found via a line search over c where each evaluation
involves solving this convex problem.

Once we have chosen Γi+1, we proceed as in Section III-A. This
leads to Algorithm 2 below for computing an overapproximation of
the reachable set using weighted norms, with the weights adjusted at
each step.

Algorithm 2 Bounding of reachable set from norm ball based on
weighted Euclidean norms
Require: Initial ball shape matrix Γ0, sequence of simulation points

xi := ξ(ti) for i = 0, . . . , N .
1: for i from 0 to N − 1 do
2: Find (c,Γi+1) to solve optimization problem (6)
3: Compute bound M on magnitude of vector field f in norm

defined by Γi+1

4: Compute upper bound ci on expansion rate µ(J(t, x)) within the
set with

5: ti ≤ t ≤ ti+1 and {xi +x : xTΓi+1x ≤ 1 +M(ti+1− ti)}.
6: Set Γi+1 = e−2ci(ti+1−ti)Γi+1

7:
8: end for
9: return {xN + x : xTΓNx ≤ 1}

2) 1-norms weighted by positive diagonal matrices: We now show
that using norms |x|1,D = |Dx|1 parametrized by positive diagonal
matrices D � 0 also leads to a convex optimization problem. The
corresponding induced matrix measure µ1,D is given by

µ1,D(A) = µ1(DAD−1) = max
j

ajj +
∑
i 6=j

di
dj
|aij |


hence the condition µ1,D(A) ≤ c can be expressed as ajjdj +∑
i6=j |aij |di ≤ cdj for j = 1, . . . , n which is linear in the di for

fixed c. The condition {x : |x|1,P ≤ 1} ⊆ {x : |x|1,D ≤ 1} requires
that dj ≤ pj for all j = 1, . . . , n. Finally, the volume of the set
{x : |x|1,D ≤ ect} is proportional to enct

∏n
i=1

1
di

which is convex
in d. Thus if D is a solution to the problem

minimize

(
enct

n∏
i=1

1

di

)1/n

subject to D � P (7)

ajjdj +
∑
i6=j

|aij |di ≤ cdj j = 1, . . . , n

where A = J(t, x) then | · |1,D is a good norm in which to
overapproximate the reachable set in a neighbourhood of the point
(t, x) in order to minimize the accumulation in volume. As with
problem (6) in the Euclidean case, the problem (7) is convex in D
for fixed c. Hence it can be readily solved via a line search over c.

3) ∞-norms weighted by positive diagonal matrices: For norms
of the form |x|∞,D = |Dx|∞ where D � 0 is a positive diagonal
matrix, a similar procedure yields the problem

minimize enct
n∏
i=1

1

di

subject to di
pi
≤ 1 i = 1, . . . , n (8)

1

c− aii

∑
j 6=i

|aij |
di
dj
≤ 1 i = 1, . . . , n.

which is a geometric program in posynomial form. This problem
is not necessarily convex in the di, but can be transformed to an
equivalent convex problem (see Section 4.5.3 of [24]).

IV. BOUNDING ERROR DUE TO NUMERICAL INTEGRATION

Numerical solvers for ordinary differential equations suffer from
errors inherent in the discretization of continuous-time systems.
Performing simulation-based verification of a continuous-time model
thus requires a bound on the accumulated numerical error over
subsequent time steps. The matrix measure has been used for the
analysis of numerical algorithms for ordinary differential equations
[17], [18], [19]. We extend these results to provide reachability
algorithms that are robust against numerical error.

We again consider the system (1) with f : [0, T ] × Rn → Rn
continuous in t and C1 in x. We are given a simulation trace
(t0, x0), (t1, x1), . . . , (tl, xl) of this system with initial condition x0

and an accuracy constant Ka > 0 such that |ξ(ti+1−ti, xi)−xi+1| ≤
Ka for all i = 0, . . . , l− 1. We wish to compute a set guaranteed to
contain the true system trajectory ξ(·, x0).

Reference [11] provides a solution to this problem using a Lips-
chitz constant. We demonstrate here an alternative procedure using
the matrix measure. As a consequence of property 1 of the matrix
measure: µ(A) ≤ ‖A‖, our method provides at least as good a bound
on the accumulated error as a similar method using the Lipschitz
constant. Unlike the Lipschitz constant which is always positive,
leading to bounds on the reachable set that necessarily diverge
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exponentially as the time horizon increases, the matrix measure is
negative for contractive systems and thus can provide bounds on the
reachable set that improve with time.

We now extend our results from Section III to develop a verification
method that provides guarantees robust against numerical error.

Proposition 3: Define ε0 = 0. For each i = 0, . . . , l − 1 suppose
that we can find ci ∈ R such that µ(J(t, x)) ≤ ci for all (t, x) ∈
[ti, ti+1]×Reach[ti.ti+1](Bεi(xi)). Define εi+1 = εie

ci(ti+1−ti) +
Ka. We have the following bounds on the accumulated numerical
error

|ξ(ti, x0)− xi| ≤ εi i = 0, . . . , l (9)

In light of Proposition 3 we can account for numerical error in
Algorithm 1 by modifying line 5 as

5: δi+1 = eci(ti+1−ti)δi +Ka.
The extension of Algorithm 2 to be robust to numerical error is less
straightforward, as we need a bound K′a on the numerical error in
the weighted Euclidean norm |x|Γi = xTΓix being used at each
step. If we have |ξ(ti+1 − ti, xi) − xi+1| ≤ Ka in the initial norm
|x| = xTΓ0x then the bound K′a can be computed as K′a =

√
s

where s is the solution to the optimization problem

minimize s
subject to K2

aΓi � sΓ0
(10)

The solution to this problem can then be incorporated to the update
of Γi+1 in Algorithm 2 by modifying lines 6 and 7 as

6: Find solution s to optimization problem (10)
7: Set Γi+1 = 1

e
2ci(ti+1−ti)+s

Γi.

V. APPLICATIONS

A. Tunnel diode oscillator

We consider a 2-dimensional model of a tunnel-diode oscillator
which has been analysed by several authors for safety verification in
[10], [14], [25]. The state equations are given by

V̇d =
1

C
(−Id(Vd) + IL)

İL =
1

L
(−Vd −R · IL + Vin)

where C = 1 pF , L = 1 µH , R = 200 Ω, Vin = 0.3 V . The diode
characteristic is approximated by a fifth degree polynomial Id(Vd) =
803.712(Vd)

5 − 1086.288(Vd)
4 + 551.088(Vd)

3 − 124.548(Vd)
2 +

10.656(Vd). We consider the initial set K = {(Vd, IL) : Vd ∈
[0.45, 0.50], IL = 0.1} over a horizon of T = 9 ns with an absolute
tolerance k = 10−8. For this problem, the measure of the Jacobian
can be computed explicitly as a function of the state Vd

µ2(J(Vd)) =

{
− R

2L
− 1

2C
I ′d(Vd) if

(
R
L

+ 1
C
I ′d(Vd)

)2
< 4

(
1
LC

+ R
LC
I ′d(Vd)

)
− R

2L
− 1

2C
I ′d(Vd) + 1

2

√(
R
L

+ 1
C
I ′d(Vd)

)2 − 4
(

1
LC

+ R
LC
I ′d(Vd)

)
otherwise.

This function is quasiconvcave with a maximum at V ∗d and hence a
bound on the matrix measure over an interval [a, b] can be computed
as

max
Vd∈[a,b]

µ2(J(Vd)) =

{
µ2(J(V ∗d )) if V ∗d ∈ [a, b]

max{µ2(J(a)), µ2(J(b))} otherwise.

We compute overapproximations of the reachable set at 400
evenly-spaced times using Algorithms 1 and 2. The matrix measure
reachability computations are performed using Python 2.7.1 running
on a machine with a 2.3 GHz Intel Core i7 processor and 8.0 GB
RAM. CVXPY is used to solve the semidefinite programs required for
Algorithm 2. For comparison, we also provide an underapproximation
of the reachable set computed by simulating a finite number of
trajectories of the system. For this low-dimensional system, this

provides a good approximation of the true reachable set. These
approximations are shown in Figure 1.

(a) Overapproximation of the reachable set in
Euclidean norm (Algorithm 1). Figure generated
in 158 s.

(b) Overapproximation of the reachable set us-
ing weighted Euclidean norms (Algorithm 2).
Figure generated in 7979 s.

(c) Approximation of the reachable set by brute
force simulation.

Fig. 1. Approximated reachable sets for the tunnel-diode oscillator with
initial set K in red.

We see that using Algorithm 1 (Figure 1(a)) generates an overap-
proximation that is somewhat conservative compared with the brute
force simulations in Figure 1(c). We see in Figure 1(b) that the
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approximation can be improved by updating the norm weights as
in Algorithm 2 at the expense of a significant increase in CPU time.
Note that this example demonstrates that reasonably tight bounds
on the reachable set can be generated even for systems in which the
matrix measure of the Jacobian is positive in some regions of the state
space. This leads to the expansion of the norm balls in the region
where Vd is approximately 0.1, but does not lead to undue expansion
globally since bounds on the matrix measure are computed within a
local region.

B. Cascade of contractive transcription modules

To demonstrate that our method scales well to large systems, we
consider a model of a protein transcription cascade consisting of n
subsystems Si each with two states governed by the dynamics

ẋi = ui(t)− δixi + k1iyi − k2i(1− yi)xi
ẏi = −k1iyi + k2i(1− yi)xi.

(11)

When the inputs ui are constrained to be nonnegative, it is easily seen
that the set [0,∞)× [0, 1] is positively invariant. It is shown in [15]
that cascades of systems of the form (11) are globally contracting in
a diagonally weighted 1-norm |·|1,D for any values of the parameters
δi, k1i and k2i and a global bound on the contraction rate is given
in terms of the parameter values.

For a given problem size n, we generate random values for
the parameters δi, k1i and k2i and compute a norm in which the
corresponding 2n-dimensional system with state z = [xT yT ]T and
interconnection ui(t) = 3 sin(10t) for i = 1 and ui(t) = 10yi−1(t)
for i > 1 is contractive. We then compute an overapproximation of
the set of states reachable from the ball K = {z : |D(z−z̄)|1 ≤ 0.2}
with centre x̄i = 1, ȳi = 0.8. System trajectories are computed at
50 evenly-spaced time points over a horizon of T = 1. The time
required to compute the trajectory along with corresponding norm
ball diameters is given as a function of the state dimension in Table
V-B.

For comparison, we also perform the trajectory-based reachability
method described in [13]. For an autonomous system ẋ = f(x), the
authors of [13] prove that if there exist functions ε, φ : Rn×Rn → R
and a constant k ∈ R satisfying

∇xφ(x, y)f(x) +∇yφ(x, y)f(y) ≤ ε(x, y)γ(x, y) + k
ε(x, y) ≥ 0

(12)

then within the region γ(x, y) ≤ 0 trajectories satisfy φ(x, y) ≤
β =⇒ φ(ξ(t, x), ξ(t, y)) ≤ β + kt. For polynomial f , if the
inequalities (12) are relaxed to sum-of-squares (SOS) constraints, the
search for (ε, φ, k) can be formulated as a semidefinite program. In
Table V-B we provide times taken to find a solution to the SOS
relaxation of (12) in MATLAB using SOSTOOLS 3.00 [26] for
systems of the form (11) of varying dimension with input u1(t) = 0.
The matrix measure method performs favourably in comparison with
determining the solution to this sum of squares program in terms of
computation time.

TABLE II
COMPARISON OF TIME TO COMPUTE REACHABLE SET FOR SYSTEMS OF
VARYING DIMENSION USING ALGORITHM 1 AND THE SUM-OF-SQUARES

METHOD DESCRIBED IN [13]. THE SYMBOL ∗ INDICATES THAT THE
COMPUTATION DID NOT RETURN WITHIN 10000 S.

state dimension 4 10 20 50 100 150 200
matrix measure computation time (s) 0.022 0.030 0.051 0.161 0.504 1.045 1.786

SOS computation time (s) 12.221 2527.851 * * * * *

To illustrate our method, we plot reachable sets for a cascade
of length 2 (state dimension 4) with randomly-generated parameter
values δ1 = 6.61, δ2 = 8.18, k11 = 2.70, k12 = 7.64, k21 =

1.94, k22 = 5.04. Projections of the overapproximation onto the
(xi, yi) planes are shown in Figure 2. Since the system is contractive
in the norm considered, we see that the diameter of the reachable
sets computed using Algorithm 1 decreases exponentially as time
increases. Note that the reachable sets computed using [13] do not
shrink with time as it is not possible to find a negative k such that
φ(ξ(t, x), ξ(t, y)) ≤ β + kt for all t.

(a) Overapproximation of the reachable set computed using Algorithm
1 with weighted 1-norm.

(b) Overapproximation of the reachable set computed using the algo-
rithm of [13] corresponding to the solution of (12) with (ε, φ, k) given
as below.

Fig. 2. Overapproximation of reachable sets projected onto (xi, yi) coordi-
nate planes.

VI. CONCLUSIONS

We provided a method of overapproximating reachable sets of
nonlinear dynamical systems using matrix measures. The examples
illustrate that our method can be used to compute guaranteed over-
approximations of reachable sets for nonlinear systems with as many
as two hundred states. This comes at the cost of a guarantee on the
accuracy of the approximation; we can only guarantee convergence
to the true reachable set asymptotically as the size of the mesh from
which initial conditions are chosen tends to zero. However, we show
that reachable sets can be computed to reasonable accuracy in a
number of practically-motivated problems.
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