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Abstract— Hyperpolarized carbon-13 magnetic resonance
imaging is a new medical imaging modality that has enabled the
real-time observation of perfusion and metabolism in vivo. The
rates at which perfusion and metabolism occur are important
for disease diagnosis and treatment monitoring. To generate an
image, the user must choose a flip angle at which to perturb
the magnetic spins associated with each of the compounds to
be imaged. We consider the problem of optimally choosing a
time-varying sequence of flip angles in order to achieve the best
estimates of rate parameters in a physiological model. We first
formulate a discrete-time model describing perfusion, exchange,
relaxation and measurement error. We then show how to
compute the Fisher information for the unknown parameters
of this model and present time-varying flip angle schemes that
maximize the Fisher information. Through numerical studies,
we demonstrate that the optimal flip angle scheme provides
better estimates of the model’s rate parameters than a constant
flip angle scheme.

I. INTRODUCTION

Recently-developed techniques for hyperpolarizing
carbon-13-containing organic molecules [1] have allowed
new insight into perfusion and metabolism through
hyperpolarized !3C magnetic resonance imaging (MRI)
and spectroscopy (MRS) [2]. MRI and MRS can be
used to generate in vivo measurements of hyperpolarized
compounds such as '3C-labeled pyruvate along with
its metabolic products such as lactate. This enables the
quantitative estimation of physiological parameters such
as perfusion and reaction rates, which can be used to
diagnose cancer and monitor its response to treatment [3].
The first clinical trial using hyperpolarized carbon-13 MRI
was recently completed in prostate cancer patients [4]. It
demonstrated the safety and feasibility of this technique in
humans, and showed elevated metabolic conversion from
hyperpolarized '3C-pyruvate to 3C-lactate in tumors.

In contrast with conventional imaging, in hyperpolarized
MRI, magnetization is a non-renewable resource. Conven-
tional MRI measures the magnetization of hydrogen, which
is plentiful in the body, and thus at thermal equilibrium there
is enough magnetization to produce measurable amount of
signal. This allows an arbitrary number of acquisitions to be
performed if we allow time for the magnetization to return
to equilibrium between acquisitions. In contrast, the thermal

J. Maidens and M. Arcak are with the Department of Electrical Engineer-
ing & Computer Sciences, University of California, Berkeley, 253 Cory Hall,
Berkeley, CA, 94720 USA e-mail: {maidens, arcak}@eecs.berkeley.edu.
P. Larson is with the Department of Radiology, University of California,
San Francisco, 1700 4th St., San Francisco, CA, 94158 USA email:
peder.larson@ucsf.edu. Research supported in part by NSERC postgraduate
fellowship PGFD3-427610-2012 and NIH grants RO0-EB0120164 and P41-
EBO013598.

equilibrium magnetization of C is much smaller than hy-
drogen due to its lower concentration and gyromagnetic ratio.
13C MRI would be very valuable because of the important
role of carbon in biology, but this is nearly impossible
due to the low equilibrium magnetization. Hyperpolarization
has enabled generation of high-quality '*C MRI signals.
Hyperpolarization can only be performed before the '3C-
labeled compound (e.g. pyruvate) is injected into the body,
and once injected the magnetization decays over time and is
partially destroyed when acquisitions are made. Thus, it is
important to carefully choose how acquisitions are made, to
make the best use of the limited magnetization available.

In current practice a constant flip angle sequence is used,
with the flip angle chosen arbitrarily by the user. Typical
values range from 10-30 degrees. Our goal is to choose a
time-varying flip angle sequence ¢ that manages the trade-
off between present and future measurement quality by
maximizing the information about the unknown parameters
contained in the acquired data. We do so by presenting an
optimal experiment design procedure that maximizes various
measures of the Fisher information matrix [5].

We begin in Section II by developing a model of the
magnetization dynamics that incorporates perfusion of hy-
perpolarized pyruvate from the blood to the tissues, the T}
decay of the magnetization as it relaxes back to equilibrium,
and the exchange of magnetization as pyruvate is converted
into lactate in the tissues. The model also incorporates
measurement error in the form of Rician-distributed noise.
In Section III, we discuss optimal experiment design and
show how the Fisher information for this model can be
computed. In Section IV we present a D-optimal variable flip
angle scheme for simultaneously estimating perfusion and
exchange rates, and we compare the variance of the resulting
parameter estimates with those resulting from two constant
flip angle schemes. In Section V we demonstrate that this
technique generalizes easily to more complex models than
the two-compartment model from Section II.

To ensure reproducibility of our results, MATLAB code
to reproduce all figures in this paper is hosted at
https://github.com/maidens/ACC-2015.

II. MODEL

We consider a dynamic model
a4 | P Juw

with unknown rate parameters R1p, R11,kpr, krrans that
models the magnetization dynamics in a tissue using an

dx —kpr — Rip 0

E(t) - kpr —Rir



arterial input function [6]. The state x1(t) denotes the mag-
netization contained in pyruvate and x5 (t) the magnetization
contained in lactate. The input to the system w is a measured
arterial input function, assumed to be of gamma-variate shape
with unknown parameters tg, v, 8, Ag [7].

We acquire data at N time points separated by intervals
of length Tr. Each time ¢ an acquisition is made, we
must choose a flip angle 0;; for each compound %k to be
measured. If the magnetization of the k-th compound before
the acquisition is x, then this choice of flip angle allows us
to measure a signal of magnitude sin(6 )z, after which
cos(fy ), magnetization remains for future acquisitions.
This causes discrete jumps, or resets, in the system state,
leading to a hybrid dynamical system [8]. Since we are only
interested in the system’s state at acquisition times, we can
avoid technicalities associated with hybrid system modelling
by discretizing the system in time and considering a discrete-
time dynamical system that simultaneously captures the
evolution of (1) between acquisitions and the discrete jumps
induced by the acquisitions. We define the transition matrices
Ad and Bd

—kpr, — R 0
Ad = exp (TR I: PZPL 1P *RlL :|>

—kpr —Rip 0 - krrans
Ba= [ kpr —Rir } (Aa=1) [ 0 ]
that correspond to the discretization of dynamics (1) assum-
ing a zero-order hold on the input between each acquisition
[9]. The measurements acquired are modelled as Rician-
distributed random variables [10], which have probability
density

2, 2
Y y + yx
foo(y) = -3 X (202 > Iy (;)

where I,, denotes the modified Bessel function of the first
kind of order v. Together, these lead to a discrete-time model
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Ykﬂg ~ Rice(ik,t,ak) k= 1,2,3.

To illustrate the data we will work with, simulated trajecto-
ries of this model are shown in Figure 1.
The model parameters are

p=[Rip,Rir. kpr,kTRANS, 0, O, B, Ag]
and we have the freedom to choose

B R
021 02 N

so as to generate the best possible estimate of the unknown
parameters. The parameters o for £ = 1,2,3 can be
estimated separately from a measurement of the background
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Fig. 1: Simulated output trajectories of the model equations

Q).

and are therefore assumed to be known. For now, we fix the
repetition time Tr = 2 s, though this could in principle be
included in ¢ as an optimization variable.

III. OPTIMAL EXPERIMENT DESIGN: METHODS

The optimal design of experiments allows the estimation
of model parameters from observed data with minimum
variance in the estimates [5]. The Cramér-Rao bound

cov(p) > Z(p,q)~*

gives a lower bound on the covariance of any estimator p in
terms of the Fisher information matrix
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It is well known that under mild assumptions, the maximum
likelihood estimator is asymptotically efficient [11], that
is, it achieves the Cramér-Rao bound as the amount of
data collected tends to infinity. Thus, to find a maximum-
likelihood estimate with minimum variance, we wish to
choose ¢ in order to maximize the Fisher information matrix
at a nominal value of the parameter vector p.

To formulate this as an optimization problem, we must
choose some scalar-valued function of Z to maximize. Com-
mon choices for this function include:

e fp(Z) = det(Z) (D-optimal design) which corresponds
to minimizing the volume of the estimate’s confidence
region

e fE(Z) = Anin(Z) (E-optimal design) which corre-
sponds to minimizing the length of the longest axis of
the confidence region

e fa(Z) = 1/tr(Z7') (A-optimal design) which corre-
sponds to minimizing the average length of the confi-
dence region’s axes.



A. Computing the Fisher information matrix

The log likelihood of the observed data for this problem
is given by

Yk,
10g p(yk.|p, q) = 10g< t)—
k
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We can compute its sensitivities with respect to the model
parameters as
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Thus, we can compute
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Thus we see that 2 (:fci’t(p, q) — 2%1.+(p, Q) Er.t + Ek’t)

can be expressed as a function ¢ depending only on the
signal-to-noise ratio I""‘T(p’q). This function, defined as
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is difficult to compute analytically, but for our purposes it is
sufficient to evaluate it numerically. In Figure 2, we plot ¢
for various values of the signal-to-noise ratio.
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Numercall computed ntegra ¢ for various SNR values

Fig. 2: Values of the function ¢ computed by numerical
integration.

Now all that remains in order to compute the Fisher

2t (p, q). Using the
product rule, we get a recursive formula for the sensitivities

S =0
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Together, we can now compute the (7,j)-th entry of the
Fisher information matrix as
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B. Eliminating nuisance parameters

Note that we do not necessarily need good estimates of
all the unknown parameters in the model. For example, the
goal of a particular experiment might be to simultaneously
estimate the perfusion parameter kr4ns and the exchange
parameter kpr,, which are useful for discriminating between
cancerous and non-cancerous tissues [13]. Thus we wish to
modify our optimality criterion to maximize the sensitivity
of the experiments to kpy and krrans while considering
the nuisance parameters only insofar as they allow us to
estimate the parameters of interest. We do so by partitioning
the information matrix as

VATRRNAY
T =
{ Ior Iy }

where the first block corresponds to the parameters of interest
and the second block corresponds to the nuisance parameters.



Optimal design can be performed by maximizing a scalar-
valued function of the Schur complement of Z5, in Z:

S=T1 — 11215, In
(see Section 6.1 of [14]).

C. Numerical optimization

To design an optimal flip angle scheme, we must solve
the flip angle optimization problem

maxélmize f(S(p,q))

for the optimization variable ¢ where f is some scalar-
valued, order-preserving function such as the D-, E- and
A-optimal design criteria, and p is fixed to some nominal
value for the unknown parameters. We do so using the
MATLAB Optimization Toolbox [15]. This toolbox provides
a derivative-free implementation of the quasi-Newton op-
timization algorithm of Broyden-Fletcher-Goldfarb-Shanno
[16], which is well-suited to finding local minima of our
objective function.

IV. OPTIMAL EXPERIMENT DESIGN: RESULTS

In order to demonstrate our method for optimal flip angle
design, we consider an experiment in which we wish to
compute estimates of the parameters [kpr,krrans]. To
ensure practical identifiability of the unknown parameters,
we assume that the parameters [Rip, Rir,%to] are known
constants with values [1/35, 1/30, 0] respectively. This is a
reasonable assumption as the magnetization decay rates I?; p
and R;;, do not vary between patients as much as the other
parameters kpy, krrans, @, 8 and Ag. The nuisance param-
eters, whose values are unknown but not important to esti-
mate, are [, 3, Ag]. We design an optimal experiment based
on the nominal parameter values [kpr, krrans, @, B, Ag] =
[0.05,0.04,2.00, 5.00, 1.00]. We further assume Rician noise
with [03, , 03, 02] =[0.01, 0.01, 0.1].

A. Constant flip angle scheme

We first consider the one-dimensional optimization prob-
lem of choosing a constant flip angle 05, = 6 for all £,t.
In Figure 3, we plot three choices of objective function
corresponding to the D-, F- and A-optimal design criteria
described in Section III. We see that all three objective
functions are quasiconcave, allowing their maximum to be
easily found. However, the optimal values differ significantly
between the three objectives.

B. Variable flip angle scheme

We now consider a problem in which flip angles can be
chosen independently for each of the measured states and
inputs and are allowed to vary with time. We define the
optimization vector

g=1[0ks t=1,....N k=12

An optimal flip angle scheme for the D-optimal design
criterion is shown in Figure 4.
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(a) D-optimal (b) E-optimal

(c) A-optimal
Fig. 3: Comparison of objective functions for the constant flip

angle design problem, with nuisance parameters eliminated
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Fig. 4: D-optimal variable flip angle scheme computed for
two-site exchange model.

C. Comparison of flip angle schemes

To demonstrate the advantage of using variable flip angle
schemes, we compare maximum likelihood estimates of
parameter values resulting from three schemes: a constant
flip angle scheme with # = 10°, the D-optimal constant flip
angle scheme with 67, = 40.96° and the variable flip angle
scheme shown in Figure 4. In Figure 5a, for each of the
three flip angle schemes, we plot the spread of maximum
likelihood estimates in parameter space corresponding to
n = 20 simulated samples of the variable Y. In Figure 5b,
we compare the mean error of the estimates computed as
ej = % S, |pj — Di ;| where p; ; is the j-th component of
the maximum likelihood estimate of the parameter vector p
that is computed using the ¢-th sample of the variable Y.

We see that the D-optimal solution for the constant flip
angle problem is able to significantly improve the estimate of
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Fig. 5: Comparison of the maximum-likelihood parameter
estimates for three flip angle schemes

the perfusion rate krgans compared to the naively-chosen
flip angle # = 10°. This is done however at the expense of
the quality of the estimate of kpy. By using a D-optimal
time-varying flip angle scheme, we are able to decrease
the estimation error in krrans and kpy simultaneously
compared with the constant scheme with § = 10°.

D. Nonuniqueness of local maximum for variable flip angle
design problem

In this section, we demonstrate that multiple local equilib-
ria exist for this nonconvex optimization problem. However,
since these flip angle protocols are designed offline, it is
possible to invest a significant amount of time searching for
optima if desired.

In order to test whether the objective function fp(Z(q))
has a unique maximum, we perform the optimization from a
number of initial values. This comparison is shown in Figure
6. For each flip angle scheme, the negative of the D-optimal
objective function value is shown in the subfigure title (here,
lower objective function values mean higher information as
the MATLAB optimization toolbox defaults to minimizing
functions). Subfigures in each row result from the same
initialization, but run for differing numbers of iterations.

These results suggest that for acquisitions 2 through 15,
where the SNR is high, the locally optimal flip angles found

Optimal fiip angle scheme —- objective value:~24.5656 Optimal fiip angle scheme —- objective value:~24.5668
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Fig. 6: Comparison of optimal flip angle schemes found
using various initializations of the decision variable 6.

for pyruvate are very similar for all three initializations. It is
only when the SNR drops to a low value that the different
optima disagree. Further, the optimal flip angle schemes
resulting from all three initializations have very similar
values for the objective function. Thus, in this example it
is unimportant which local maximum is attained.

V. EXTENSION TO MORE GENERAL MODELS

This procedure is not limited to the particular model (1)
that we chose, but works equally well for other linear models
of exchange, perfusion and relaxation. Indeed, the derivation
of the Fisher information given in Section III-A does not
depend on the specific dynamics chosen until the recursive
formula (3). Thus it is easy to extend these results to a more
general class of models.

As an example, we consider the three-site model from [17]

d —kpr —kpa — Rip 0 0 krRrANS
0= kpr “Ry, 0 |z(t)+ 0 ut) (4)
v kpa 0 —Ria 0

where the state x3(t) represents the magnetization in the
metabolite alanine. The parameter kp4 is added to the set



of parameters of interest and optimization is performed using
the nominal value 0.03. The parameter 21 4 is assumed to be
a known constant with value 1/40. A D-optimal flip angle
scheme for this three-site model is shown in Figure 7.

Optimal flip angle scheme
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Fig. 7: D-optimal variable flip angle scheme computed for

three-site exchange model.

It may also be the case that the arterial input function must
also be estimated from a blood compartment in the image,
using the same flip angles as the first compartment. In this
case, the model output can be modified by as

jg,t = sin(@ljt)ut.

The resulting optimal flip angle scheme for the two-
compartment model is given in Figure 8.
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Fig. 8: D-optimal variable flip angle scheme for the two-site
exchange model computed subject to the constraint that flip
angles for the first compartment and the input must be equal.

VI. CONCLUSION

We have formulated a dynamic model describing perfu-
sion, relaxation, exchange and measurement of magnetiza-
tion in a living subject, and we have derived a formula for the
Fisher information about model parameters contained in the
output. This allowed us to compute time-varying flip angle
schemes that are locally optimal with respect to the Fisher
information. While the optimization problem described is
nonconvex, we provide evidence that locally optimal variable

flip angle schemes can outperform any constant flip angle
scheme. This optimal variable flip angle scheme can simul-
taneously decrease the error in estimates of the perfusion
and metabolism rates in our model, when compared with
a naive flip angle scheme. We also demonstrated how these
results generalize easily to more complex models, suggesting
that these techniques could be widely applicable for quantita-
tive physiological parameter estimation using hyperpolarized
magnetic resonance imaging.
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