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Abstract— Matrix measures, or logarithmic norms, have
historically been used to provide bounds on the divergence
of trajectories of a system of ordinary differential equations
(ODEs). In this paper we use them to compute guaranteed
overapproximations of reachable sets for switched nonlinear
dynamical systems using numerically simulated trajectories,
and to bound the accumulation of numerical errors along
simulation traces. To improve the tightness of the computed ap-
proximations, we connect these classical tools for ODE analysis
with modern techniques for optimization and demonstrate that
minimizing the volume of the computed reachable set enclosure
can be formulated as a convex problem. Using a benchmark
problem for the verification of hybrid systems, we show that
this technique enables the efficient computation of reachable
sets for systems with over 100 continuous state variables.

I. INTRODUCTION

This paper introduces the classical notion of matrix mea-
sures to the reachability problem which is critical for proving
safety, liveness or fairness properties of continuous and
hybrid systems. Reachability for nonlinear systems is a com-
putationally expensive operation that typically scales poorly
with the number of continuous state variables. Existing
approaches include level set methods [1], generating linear or
piecewise linear models approximating the nonlinear dynam-
ics for which linear reachability techniques can be applied
[2], [3], methods based on abstractions [4], [5], interval
Taylor series methods [6], [7] and differential inequality
methods [8], [9].

Trajectory-based approaches [10], [11], [12], [13] have
the advantage that numerical simulation is a relatively in-
expensive operation, even for systems with a large number
of states. Thus, unlike the more computationally expensive
approaches mentioned above, they can scale well with state
dimension. In addition, simulation-based approaches are nat-
urally parallelizable because the reachability subproblems
corresponding to each trajectory can be solved independently.

We present a new trajectory-based approach where we first
sample a number of trajectories of the system. Next, we
use matrix measures to establish a bound on the divergence
between the samples and neighbouring trajectories. Each
sample trajectory provides information about the behaviour
of all trajectories initialized from a norm ball centred at the
sample’s origin. Thus, by sampling enough trajectories such
that the norm balls cover the initial set, and using the matrix
measure of the system’s Jacobian at each point to propagate
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the norm balls forward along the system’s flow, we are able
to compute a bound on the set of reachable states (Figure 1).

The papers [11], [12] also take a trajectory-based approach
to the reachability problem, but use Lipschitz constants in
place of matrix measures to bound the divergence between
trajectories. Since Lipschitz constants are always positive,
this method leads to reachable set enclosures that expand
with time even for systems with negative matrix measures.
Unlike [10] which is not able to guarantee that the com-
puted approximation contains the true reachable set, here
we provide a guaranteed overapproximation of the set of
reachable states. We further account for numerical error,
thus our technique can be used to provide formal guarantees
of safety. Another related trajectory-based method is [13]
which uses finite-time invariant sets computed using sum-
of-squares methods to bound the divergence of trajectories.
Our approach does not require the symbolic manipulation of
polynomials, and thus it scales better as the dimension of the
state space increases.

Fig. 1: Trajectory-based overapproximation of the reachable set. The initial
set is covered by a set of norm balls and a trajectory from the centre of
each ball is computed. The reachable set is then enclosed by a union of
balls whose radii are computed using the matrix measure.

Using our method each simulation and the corresponding
bound on nearby trajectories can be computed very quickly.
Although the bound we provide for each simulation may be
conservative, we guarantee that the computed overapproxi-
mation approaches the true reachable set asymptotically as
the mesh radius of chosen initial states converges to zero.
To avoid conservativeness in the approximation, we pursue
and optimization approach. We demonstrate that if we cover



the initial set by weighted 1-, 2-, or ∞-norm balls, the
problem of minimizing the volume of the resulting reachable
set enclosure can be formulated as a convex problem.

We begin with a brief survey of matrix measures in
Section II. In Section III we demonstrate that our matrix
measure approach to nonlinear reachability analysis provides
a guaranteed overapproximation of the set of reachable states
of the system. We then provide a method for improving the
tightness of the approximation by weighting matrix measures
in an optimal manner. In Section IV we use the matrix
measure for analysing the accumulation of numerical errors
along simulated trajectories of the system. Finally, in Section
V we demonstrate our method on the leak test benchmark
[14]. This benchmark problem was formulated to compare
the scalability of hybrid system verification algorithms as
the number of continuous state variables increases. Our
algorithm performs well on this benchmark, allowing us to
verify a model with over a hundred state variables.

II. OVERVIEW OF MATRIX MEASURES AND
CONTRACTION

Let | · | be a norm on Rn and ‖ · ‖ be its induced norm
on the set of real matrices of dimension n×n. The measure
µ(A) of a matrix A ∈ Rn×n is the one-sided derivative of
‖ · ‖ at I ∈ Rn×n in the direction A:

µ(A) = lim
t→0+

‖I + tA‖ − ‖I‖
t

. (1)

This limit is guaranteed to exist for any norm | · | and A ∈
Rn×n (see [15]). The following properties of µ [15], [16]
are critical:

1) For all eigenvalues λi(A) of A we have −‖A‖ ≤
− µ(−A) ≤ <(λi(A)) ≤ µ(A) ≤ ‖A‖.

2) µ(cA) = cµ(A) for all c ≥ 0.
3) µ(A+B) ≤ µ(A) + µ(B).
4) If P ∈ Rn×n is nonsingular then the measure µP of the

norm |x|P = |Px| is given in terms of µ by µP (A) =
µ(PAP−1).

Some familiar vector norms as well as their corresponding
induced matrix norms and measures are given in Table I.
From these expressions, it is clear that unlike the Lipschitz
constant, the matrix measure can take negative values. Fur-
ther, it follows from property 1 that the matrix measure is
bounded above by the Lipschitz constant.

Vector norm Induced matrix norm Induced matrix measure

|x|1 =
∑
j |xj | ‖A‖1 = maxj

∑
i |aij | µ1(A) = maxj

(
ajj +

∑
i 6=j |aij |

)
|x|2 =

√∑
j x

2
j ‖A‖2 =

√
maxj λj(ATA) µ2(A) = maxj

1
2

(
λj(A+AT )

)
|x|∞ = maxj |xj | ‖A‖∞ = maxi

∑
j |aij | µ∞(A) = maxi

(
aii +

∑
j 6=i |aij |

)
TABLE I: Commonly used vector norms and their corresponding matrix
norms and measures

The matrix measure has long been used to provide esti-
mates on solutions of systems of ordinary differential equa-
tions [15], [16], [17], [18], [19]. The following proposition,
adapted from [19], allows us to bound the distance between
trajectories of a system

ẋ(t) = f(t, x(t)) (2)

in terms of their initial distance and the rate of expansion
of the system given by the measure of the Jacobian matrix
J(t, x) with respect to x.

Proposition 1: Let D ⊆ Rn and let the Jacobian J(t, x) =
∂f
∂x (t, x) satisfy µ(J(t, x)) ≤ c for all (t, x) ∈ [0, T ] × D.
If every trajectory of (4) with initial conditions in the line
segment {hx0 + (1 − h)z0 : h ∈ [0, 1]} remains in D until
time T then the solutions ξ(t) and ζ(t) with ξ(0) = x0 and
ζ(0) = z0 satisfy

|ξ(t)− ζ(t)| ≤ |ξ(0)− ζ(0)|ect. (3)

for all t ∈ [0, T ].
This proposition provides global results about the divergence
between trajectories of (2) using only information about the
system’s Jacobian at each point. If there exists c < 0 such
that for all (t, x) ∈ [0,∞)×D

µ(J(t, x)) ≤ c

then the system (2) or the vector field f(t, x) is said to
be contracting with respect to | · | [19], [20], [21]. From
(3) it follows that for such systems any two trajectories
converge asymptotically. Unlike the literature on contractive
or incrementally stable systems which deals primarily with
the case where c < 0, our results allow the expansion rate c
to be positive.

III. OVERAPPROXIMATION OF REACHABLE SETS

We study a class of switched nonlinear systems

ẋ(t) = fσ(t)(t, x(t)) (4)

where σ : R → S is a known function describing the
switching between modes parametrized by the set S and
{fσ : [0,∞) × Rn → Rn}σ∈S is a family of functions
continuous in t and C1 in x that describe the continuous-time
dynamics within each mode. We assume that on any bounded
time interval, only a finite number of switches occur.

Given a compact initial set K and final time T we wish
to find a set R such that all trajectories ξ(·, x0) of (4) with
initial condition ξ(0, x0) = x0 ∈ K satisfy ξ(T, x0) ∈ R .
To simplify the presentation, we assume throughout Section
III that trajectories of (2) can be computed exactly. In Section
IV we will extend the results presented here to ensure that
numerical inaccuracies due to floating point arithmetic and
discretization of the continuous dynamics are accounted for.

We first introduce the required notation. The ball with
radius ε and centre x0 is given by {x : |x− x0| ≤ ε} and is
denoted Bε(x0). Throughout, we denote the solution to the
differential equation (4) with initial condition x0 as ξ(t, x0),
or when it is clear that we have fixed a particular initial
condition x0, simply as ξ(t). The set reachable at time t
from initial set S is denoted Reacht(S) and is defined as
{ξ(t, x) : x ∈ S}. The tube reachable from the initial set S
over an interval [0, t] is denoted Reach[0,t](S) = {ξ(s, x) :
s ∈ [0, t], x ∈ S}. For a set X ⊆ Y , the error with which
Y overapproximates X can be quantified via the Hausdorff
distance d(X,Y ) = supy∈Y infx∈X |x− y|.



A. Basic Algorithm

We begin by covering the initial set K by a finite num-
ber of norm balls Bεk(xk). The set reachable from K is
contained in the union of the sets reachable from these
norm balls. The number of balls can be chosen so as to
achieve the required tightness in the approximation of the
reachable set; a larger number of balls provides a more
accurate approximation, while covering K by a single ball
reduces computation time at the cost of reduced tightness.
The computation of the set reachable from each norm ball
can be performed in parallel, thus we assume without loss of
generality that the initial set is given by a single norm ball
K = Bε(x0).

In light of Proposition 1, given a global bound c on
µ(Jσ(t, x)), we know that all trajectories of (4) with initial
conditions in Bε(x0) lie in BεecT (ξ(T, x0)). Since a global
bound c on the expansion rate is far too conservative, we
provide an iterative method for computing a more accurate
approximation based on a local bound on the expansion
rate. We begin with the following corollary of Proposition 1,
which ensures that our algorithm yields an overapproxima-
tion of the set of reachable states.

Corollary 1: Let the system (4) be in mode σi for t ∈
[ti, ti+1] and let the Jacobian Jσi(t, x) of fσi(t, x) with re-
spect to x satisfy µ(Jσi(t, x)) ≤ ci for all (t, x) ∈ [ti, ti+1]×
Conv(Reach[ti,tt+1](Bδi(ξ(ti)))). Then any solution ζ of (4)
with ζ(ti) ∈ Bδi(ξ(ti)) satisfies

|ξ(ti+1)− ζ(ti+1)| ≤ |ξ(ti)− ζ(ti)|eci(ti+1−ti). (5)

Thus given a sequence of local bounds ci we can com-
pute a guaranteed overapproximation of ReachT (Bε(x0)) as
Bδ(ξ(T, x0)) where

δ =

(
N−1∏
i=0

eci(ti+1−ti)

)
ε.

Note that the times ti are not necessarily switching times,
and may be arbitrary so long as all switching times appear
in the sequence {ti}i∈N. The ti could be, for example,
times at which a numerical trace of (4) is computed. The
set Conv(Reach[ti,ti+1](Bδi(ξ(ti)))) is generally not known,
but a crude overapproximation will suffice for the purpose
of computing the constant ci. If we can find some crude
bound S on Reach[0,T ](K) (for example an invariant set
containing K) such that |fσ(t)(t, x)| ≤ M for all t ∈ [0, T ]
and all x ∈ S then we have the containment

Conv(Reach[ti,ti+1](Bδi(ξ(ti)))) ⊆ Bδi+M(ti+1−ti)(ξ(ti)).

Note that once an overapproximation of the reach set is
computed, this bound can then be used to recompute a
smaller M and the method reapplied to generate an even
tighter approximation. The proposed method is summarized
in Algorithm 1.

The following corollaries of Proposition 1 provide infor-
mation about the tightness of this approximation. Corollary
2 establishes that the approximation can be made arbitrarily

Algorithm 1 Basic algorithm for bounding ReachT (K)

Require: Initial ball size ε > 0, bound M on magnitude of vector field f ,
sequence of simulation points xi := ξ(ti) for i = 0, . . . , N .

1: Set δ0 = ε
2: for i from 0 to N − 1 do
3: Compute upper bound ci on expansion rate µ(Jσi (t, x)) within the

set with
4: ti ≤ t ≤ ti+1 and |x− xi| ≤ δi +M(ti+1 − ti).
5: Set δi+1 = eci(ti+1−ti)δi
6: end for
7: return BδN (xN )

accurate by covering the initial set K by a collection of balls
of sufficiently small radius:

Corollary 2 (Tightness as a function of mesh size):
Let D ⊆ Rn be convex and let the Jacobian Jσ(t)(t, x)
of fσ with respect to x satisfy µ(Jσ(t)(t, x)) ≤ c for
all (t, x) ∈ [0,∞) × D. Then the approximation error
d(Reacht(Bε(x0)),Bectε(ξ(t, x0))→ 0 linearly as ε→ 0.

Corollary 3 establishes that for contractive systems, a
single ball overapproximating the initial set K is sufficient
to generate an approximation that becomes arbitrarily tight
as T →∞:

Corollary 3 (Asymptotic tightness in contractive systems):
Let D ⊆ Rn be convex and let fσ satisfy µ(Jσ(t)(t, x)) ≤
c < 0 for all (t, x) ∈ [0,∞) × D. Then the approximation
error d(ReachT (Bε(x0)),BecT ε(ξ(T, x0))) → 0
exponentially as T →∞.
Note that covering a set S ⊆ Rn by a uniform mesh of
radius ε requires Θ(ε−n) mesh points and hence the practical
applicability of these tightness results is limited. However,
methods exist in the literature for choosing non-uniform
meshes of trajectories to simulate (e.g., Section 3 of [10])
which help alleviate this issue.

B. Algorithm with norm updating

We now provide a modified scheme that allows us to
optimize the norm in which the expansion is measured at a
given time and state (t, x). We consider a family of weighted
norms {| · |Γ} parametrized by weights Γ from some set of
real n × n matrices. Given an initial set Bi described as a
norm ball of | · |Γi we
• overapproximate the initial ball Bi by a ball B̄i in some

new norm | · |Γi+1

• compute an expansion rate ci+1 at the point (ti, xi)
satisfying ci+1 ≥ µΓi+1(Jσi(ti, xi)) where µΓi+1 is the
matrix measure induced by | · |Γi+1

(Recall that µΓ can
be computed in terms of µ via Property 4 from Section
II.)

• compute an overapproximation of the set reachable form
B̄i using the expansion rate ci+1. This gives the new
set Bi+1.

This procedure is illustrated in Figure 2.
It may appear that the next weight Γi+1 should be selected

to minimize ci+1. However there is a tradeoff between how
small we can make ci+1 and how tightly B̄i approximates
Bi. For example, there may be some weight Γi+1 such that
the expansion rate ci+1 is very small, but if this weight is far
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Fig. 2: Given a set Bi which encloses the set reachable at time ti, we
wish to compute a minimum-volume enclosure Bi+1 of the reachable set
at time ti+1. To do this, we overapproximate Bi by a ball B̄i in a different
weighed norm and propagate the resulting ball forward using an expansion
rate computed in the new norm to obtain Bi+1. By formulating this as
an optimization problem, we are able to manage the trade-off between
the desire to minimize the expansion rate and the desire to minimize the
conservatism induced by overapproximating Bi by B̄i.

from the previous weight Γi then Bi and B̄i will be of very
different shapes and thus the overapproximation of Bi by
B̄i will be very conservative. Thus, instead, at each step we
choose Γi+1 such that the volume vol(Bi+1) is minimized:

minimize vol(Bi+1)

subject to Bi ⊆ B̄i (6)
µΓi+1(Jσi(ti, xi)) ≤ ci+1.

For certain families of norms, this can be formulated as a
convex optimization problem in the weighting Γ. We now
describe three such cases.

1) Euclidean norms weighted by positive definite matri-
ces: We consider the family of weighted Euclidean norms
of the form x 7→ |Px|2 where P is a positive definite matrix.
There is a one-to-one correspondence between such norms
and their unit balls, described by the nondegenerate ellipsoid
{x : xTΓx ≤ 1} and parametrized by Γ = P 2 from the set
of positive definite matrices.

The following proposition relates Γ with the expansion
rate of (4) at (t, x).

Proposition 2 (Lemma 2 of [22]): If

ΓA+ATΓ ≤ 2cΓ

where Γ is a positive definite matrix then µ(A) ≤ c in the
norm x 7→ |Px|2 where P = Γ1/2 � 0.

If Bi = {x : xTΓix ≤ 1} and B̄i = {x : xTΓi+1x ≤ 1}
then the constraint Bi ⊆ B̄i can be expressed in terms of
the parameters as Γi+1 � Γi.

The set reachable from {xi + x : xTΓi+1x ≤ 1} is
approximated by {xi+1+x : xTΓi+1x ≤ e2c(ti+1−ti)} where
c satisfies

Γi+1Jσi(ti, xi) + Jσi(ti, xi)
TΓi+1 ≤ 2cΓi+1.

We wish to choose Γi+1 so as to minimize the volume of
the computed reach set

Bi+1 = {xi+1 + x : xTΓi+1x ≤ e2c(ti+1−ti)}.

As the volume of the ellipsoid {x : xTΓx ≤ 1} is propor-
tional to det(P−1), the volume vol(Bi+1) is proportional to

1√
det(e−2c(ti+1−ti)Γi+1)

. Problem (6) can now be cast as the

following optimization problem in the variables c and Γi+1:

minimize −e−2c(ti+1−ti) det(Γi+1)1/n

subject to Γi+1 � Γi (7)
Γi+1Jσi(ti, xi) + Jσi(ti, xi)

TΓi+1 � 2cΓi+1.

For fixed c ∈ R this is a convex problem in the variable
Γi+1. Thus a solution can be found via a line search over c
where each evaluation involves solving this convex problem.

Once we have chosen Γi+1, we proceed as in Section
III-A. This leads to Algorithm 2 below for computing
an overapproximation of the reachable set using weighted
norms, with the weights adjusted at each step.

Algorithm 2 Bounding of reachable set from norm ball based
on weighted Euclidean norms
Require: Initial ball shape matrix Γ0, sequence of simulation points xi :=

ξ(ti) for i = 0, . . . , N .
1: for i from 0 to N − 1 do
2: Find (c,Γi+1) to solve optimization problem (7)
3: Compute bound M on magnitude of vector field f in norm defined

by Γi+1

4: Compute upper bound ci on expansion rate µ(Jσi (t, x)) within
the set with

5: ti ≤ t ≤ ti+1 and {xi+x : xTΓi+1x ≤ 1+M(ti+1− ti)}.
6: Set Γi+1 = e−2ci(ti+1−ti)Γi+1

7:
8: end for
9: return {xN + x : xTΓNx ≤ 1}

2) 1-norms weighted by positive diagonal matrices: We
now show that using norms |x|1,D = |Dx|1 parametrized by
positive diagonal matrices D � 0 also leads to a convex
optimization problem. The corresponding induced matrix
measure µ1,D is given by

µ1,D(A) = µ1(DAD−1) = max
j

ajj +
∑
i6=j

di
dj
|aij |


hence the condition µ1,D(A) ≤ c can be expressed as

ajjdj +
∑
i6=j

|aij |di ≤ cdj j = 1, . . . , n

which is linear in the di for fixed c. The condition {x :
|x|1,P ≤ 1} ⊆ {x : |x|1,D ≤ 1} requires that dj ≤ pj for all
j = 1, . . . , n. Finally, the volume of the set {x : |x|1,D ≤
ect} is proportional to enct

∏n
i=1

1
di

which is convex in d.
Thus if D is a solution to the problem

minimize

(
enct

n∏
i=1

1

di

)1/n

subject to D � P (8)

ajjdj +
∑
i 6=j

|aij |di ≤ cdj j = 1, . . . , n

where A = Jσi(ti, xi) then | · |1,D is a good norm in which
to overapproximate the reachable set in a neighbourhood



of the point (ti, xi) in order to minimize the accumulation
in volume. As with problem (7) in the Euclidean case, the
problem (8) is convex in D for fixed c and can be readily
solved via a line search over c.

3) ∞-norms weighted by positive diagonal matrices: For
norms of the form |x|∞,D = |Dx|∞ where D � 0 is
a positive diagonal matrix, a similar procedure yields the
problem

minimize enct
n∏
i=1

1

di

subject to
di
pi
≤ 1 i = 1, . . . , n (9)

1

c− aii

∑
j 6=i

|aij |
di
dj
≤ 1 i = 1, . . . , n.

which is a geometric program in posynomial form. This
problem is not necessarily convex in the di, but can be
transformed to an equivalent convex problem (see Section
4.5.3 of [23]).

IV. BOUNDING ERROR DUE TO NUMERICAL
INTEGRATION

Numerical solvers for ordinary differential equations suffer
from errors inherent in the discretization of continuous-
time systems. Performing simulation-based verification of
a continuous-time model thus requires a bound on the
accumulated numerical error over subsequent time steps. The
matrix measure has been used for the analysis of numerical
algorithms for ordinary differential equations [16], [17],
[18]. We now extend these results to provide reachability
algorithms that are robust against numerical error.

We again consider the system (4) with fσ : [0, T ]×Rn →
Rn continuous in t and C1 in x for all σ ∈ S. We are
given a simulation trace (t0, x0), (t1, x1), . . . , (tl, xl) of this
system with initial condition x0 and an accuracy constant
Ka > 0 such that |ξ(ti+1 − ti, xi) − xi+1| ≤ Ka for all
i = 0, . . . , l − 1. We wish to compute a set guaranteed to
contain the true system trajectory ξ(·, x0).

Reference [11] provides a solution to this problem using
a Lipschitz constant. We demonstrate here an alternative
procedure using the matrix measure. As a consequence of
property 1 of the matrix measure: µ(A) ≤ ‖A‖, our method
provides at least as good a bound on the accumulated error
than a similar method using the Lipschitz constant. We then
extend our results from Section III to develop a verification
method that provides guarantees robust against numerical
error.

Proposition 3: Define ε0 = 0. For each i = 0, . . . , l − 1
suppose that we can find ci ∈ R such that µ(Jσi(t, x)) ≤ ci
for all (t, x) ∈ [ti, ti+1] × Conv(Reach[ti.ti+1](Bεi(xi))).
Define εi+1 = εie

ci(ti+1−ti) + Ka. We have the following
bounds on the accumulated numerical error

|ξ(ti, x0)− xi| ≤ εi i = 0, . . . , l (10)

In light of Proposition 3 we can account for numerical error
in Algorithm 1 by modifying line 5 as

5: δi+1 = eci(ti+1−ti)δi +Ka.
The extension of Algorithm 2 to be robust to numerical
error is less straightforward, as we need a bound K ′a on
the numerical error in the weighted Euclidean norm |x|Γi =
xTΓix being used at each step. If we have |ξ(ti+1−ti, xi)−
xi+1| ≤ Ka in the initial norm |x| = xTΓ0x then the bound
K ′a can be computed as K ′a =

√
s where s is the solution

to the optimization problem

minimize s
subject to K2

aΓi � sΓ0
(11)

The solution to this problem can then be incorporated to the
update of Γi+1 in Algorithm 2 by modifying lines 6 and 7
as

6: Find solution s to optimization problem (11)
7: Set Γi+1 = 1

e
2ci(ti+1−ti)+s

Γi.

V. LEAK TEST BENCHMARK

We now consider a model for the detection of leaks in
a pressurized network. This model is presented in [14] as
a benchmark problem for comparing the performance of
verification algorithms for hybrid systems as the number of
continuous states increases. The model is a switched hybrid
system with nonlinear dynamics in each mode and time-
dependent switching between modes and is therefore well-
suited to analysis using our method.

A. Modelling

We model a network of pipe segments designed to trans-
port pressurized gas. The network has the topology of a tree
in which gas enters through the root segment and exits to
burners situated at the leaf segments. The gas pressure in
each segment i of the network is modelled by a state variable
xi. Gas enters segment i through a valve vi upstream from
the segment. At each leaf segment ` of the tree is a terminal
valve v∗` regulating the flow from the terminal segment to a
gas burner.

We wish to perform a test that determines if any valves
in the network leak. To do this, an additional test valve vti
is attached to each segment i. This valve is connected to a
bubbler that empties into a vessel of liquid. When the test
valve vti is opened, if the pressure in segment i is above a
known threshold z0, gas flows through the valve and can be
observed bubbling the vessel. A sample network illustrating
this setup is shown in Figure 3.

For a given segment i, we denote the set of neighbouring
segments Ni. The system’s dynamics are governed by the
equations

ẋi = di,σ(t)g(xi) +
∑
j∈Ni

cj,σ(t)f(xi, xj) (12)

where f(x, y) = φ(x− y) for some odd increasing differen-
tiable function φ. The function g is such that g(x) = 0 for



Fig. 3: Sample network for the leak test problem.

x less than some bubbling threshold z0 and decreasing for
x > z0. In [14] the functions

f0(x, y) =

{
−
√
x− y x ≥ y

√
y − x x < y

and

g0(x) =

{
−
√
x− z0 x ≥ z0

0 x < z0.

are used. In order to satisfy our differentiability assumption,
we generate f and g by taking the convolution of f0 and g0

with the bump functions

b2ε(x, y) =
1

ε2
e

1
1−|(x,y)/ε|2 1{|(x,y)|<ε}

and
b1ε(x) =

1

ε
e

1
1−(x/ε)2 1{|x|<ε}

respectively for ε = 10−3. This generates function f and
g that approximate f0 and g0 but are C1 everywhere, as is
required for our analysis.

In addition, we append states with dynamics ẋ0 = 0
and ẋ∗ = 0 that represent the constant pressures in the
chamber used to pressurize the network and the ambient
pressure respectively. This gives us a system with full state
x = [x0, x1, . . . , xn, x

∗]T . The switching is determined by
whether each valve is turned on or off. If valve vj between
segment i and a neighbouring segment j is closed at time t
then cj,σ(t) = cclosed, otherwise cj,σ(t) = copen. Similarly,
di,σ(t) = dopen whenever the bubbler valve for segment i is
open, and di,σ(t) = dclosed otherwise.

A leak test proceeds as follows. The network is pressurized
for an initialization period of tinit time units, during which
all internal valves are opened and gas enters the network
through the root from a chamber with a fixed pressure. After
the initialization period is complete, the internal valves are
closed and segments are tested, beginning from the leaf
segments. To test a given segment, we first wait for a period
of twait time units. Afterwards, the bubble valve and the
upstream valves are opened. Bubbling is expected initially,
and if bubbling does not occur a leak in an upstream valve
is suspected. We now wait for a period of ttest. We expect
the bubbling to stop within this period, otherwise a leak in
the downstream valve is suspected.

B. Computing contraction rate

The interaction terms between states satisfy

∂f

∂x
(x, y) = φ′(x− y) = −∂f

∂y
(x, y)

and the leak term satisfies ∂g
∂x (x) ≤ 0. Now, if Jσ(t)(t, x)

is the system Jacobian then the rows corresponding to states
x0 and x∗ all have Jij(t, x) = 0 for all j. The remaining
rows then satisfy

Jii(t, x) +
∑
j 6=i

|Jij(t, x)|

=

(
di,σ(t)

∂g

∂xi
(xi) +

∑
j∈Ni

cj,σ(t)
∂f

∂xi
(xi, xj)

)

+
∑
j∈Ni

∣∣∣∣cj,σ(t)
∂f

∂xj
(xi, xj)

∣∣∣∣
= di,σ(t)

∂g

∂xi
(xi) ≤ 0.

Therefore

µ∞(Jσ(t)(t, x)) = max
i

Jii(t, x) +
∑
j 6=i

|Jij(t, x)|


=

max
i
di,σ(t)

∂g

∂xi
(xi) if dj,σ(t) > 0 for all j

0 otherwise.

C. Verification of the example network

We wish to verify a leak test procedure for an example
network with the topology presented in Figure 3. The valve
and test parameters are given in Table II.

copen cclosed dopen dclosed z0 tinit twait ttest
1.0 0.01 0.1 0 1.1 10 3 3

TABLE II: Valve and test parameters for verification of sample network.

We assume that for each segment i, the initial states satisfy
0.95 ≤ xi(0) ≤ 1.05, x0 = 2, x∗ = 1. We wish to verify
that for any set of initial conditions within this range, this
leak test procedure correctly determines that no valves leak.
Using the value of µ∞(Jσ(t)(t, x)) computed in Section V-
B, we can perform the verification using a single simulation
trace. This trace, and the corresponding over-approximations
of the reachable set are shown in Figure 4.

D. Demonstration of scalability

We use the leak test benchmark to demonstrate that our
reachability algorithm scales well, allowing us to verify the
correctness of a leak test procedure for systems with a
large number of state variables. We consider a sequence of
binary tree networks of increasing depth. The valve and test
parameters are given in Table II but with tinit changed to
a value of 40. Note that the initialization time tinit must
be greater than for the sample network in Section V-C to
generate a successful test because it takes a longer amount
of time to pressurize a large network.



Fig. 4: Verification of a leak test scheme using a single simulation trace.
The single computed trace is shown in black. The computed overapproxi-
mation of set reachable from the set of initial conditions is shown red. The
dashed blue line depicts the bubbling threshold.

The reachability computations are performed in Python
2.7.1 running on a machine with a 2.3 GHz Intel Core
i7 processor and 8.0 GB RAM. The time required for
computation is given in Table III for networks of varying
dimension.

State dimension 3 7 15 31 63 127
Time for verification (s) 1.520 3.275 7.603 17.994 51.407 107.525

TABLE III: Computation time to verify binary tree networks with varying
dimension.

We see that using Algorithm 1 we can verify the leak test
procedure for as many as 127 states relatively quickly.

VI. CONCLUSIONS

We provided a method of using matrix measures to
compute reachable set enclosures for switched nonlinear
dynamical systems. We showed that this method provides
guaranteed overapproximations of the reachable sets and
provided a method of improving the tightness of the approxi-
mation by choosing optimally weighted norms. Our example
illustrates that this method can be applied to a benchmark
problem in the verification of high-dimensional nonlinear
hybrid systems, allowing us to compute reachable sets for
systems with as many as 127 continuous state variables.
This degree of scalability is remarkable in the context of

nonlinear reachability, but comes at the cost of a guarantee
on the tightness of the approximation; we can only guarantee
convergence to the true reachable set asymptotically as the
size of the mesh from which initial conditions are chosen
tends to zero. However, we show that our method computes
reachable set enclosures of sufficient tightness to verify
safety for this benchmark problem.
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