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Abstract— We present a graph-theoretic method of system-
atically constructing global Lyapunov functions for large-scale,
heterogeneous multi-agent networks with nonlinear dynamics.
We illustrate the power of this method by demonstrating the
stability of a control protocol for the self-organization of swarms
of mobile agents into hierarchical formations.

I. INTRODUCTION

Recent interest in the distributed, cooperative control of
multi-agent systems has generated a wealth of research
into stable formation control for systems of autonomous
agents [1]-[3]. The formation control problem involves the
development of algorithms to control the relative positions
and orientations of a group of robots, allowing the group to
perform tasks and navigate its environment as a whole [4].
This aggregate behaviour enables the completion of tasks
like distributed sensing, monitoring and surveillance to be
performed without the guidance of a centralized controller.

Analysis of a formation control algorithm often involves a
proof that the algorithm is stable for any initial configuration
of the agents [5]-[7]. In this paper, we prove the stability of
hierarchically coupled multi-agent systems by demonstrating
the existence of a global Lyapunov function.

We provide a general method of constructing Lyapunov
functions for multi-agent systems from simple Lyapunov
functions V; corresponding to the dynamics of each agent
in the system. The results presented here are based on the
graph-theoretic approach of Li and Shuai [8], which provides
a method of choosing coefficients ¢; to construct global
Lyapunov functions of the form

n
V(z) =Y eVi(x:).
i=1
This construction relies on Kirchhoft’s Matrix Tree Theorem
to choose the coefficients c;.

First, we present a combinatorial result, (Theorem 1) that
allows us to rearrange terms in the derivative of the Lyapunov
function in terms of cycles in the graph. This then leads
to a simple criterion for verifying that Vs non-positive
(Theorem 2). Rather than considering the network as a
whole, with its multiple coupled feedback paths, Theorem 2
allows us to show that V < 0 by considering only individual
feedback loops.
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Next, we present a hierarchical formation control protocol
which clusters agents into k£ swarms, and co-ordinates the
velocities of these swarms via simple leader-to-leader con-
sensus. We demonstrate the applicability of our results by
using them to construct a Lyapunov function that demon-
strates the global stability of the closed-loop system.

II. PRELIMINARIES
A. Graph-theoretic preliminaries

A weighted directed graph, or weighted digraph, is a
graph G = (V(G), E(G)) together with a weight function
w : E(G) — R, that assigns to each edge of G a non-
negative weight. We can extend the domain of the weight
function w to the set of subgraphs of G by defining the
weight of a subgraph as the product of the weights of all
edges in the subgraph.

A weighted digraph can be described by its weighted
adjacency matrix Ag, with entries a§ representing the weight
w(ij) of the edge i; directed from vertex i to vertex j. The
set of neighbours N; = {j € V(G) : ji € E(G)} of vertex
1 consists of all vertices with incoming connections to <.
A sequence of edges of G i1 — s — -+ — iy — i1
that begins and ends at the same vertex is called a directed
cycle, or feedback cycle, of length ¢ provided that the vertices
i1,...,%p are all distinct.

Given an n-vertex graph G, a subgraph of G is called a
directed spanning tree rooted at vertex i if it contains n — 1
edges and a directed path from the root vertex ¢ to each
other vertex of G. A spanning unicyclic subgraph of G is
a spanning directed subgraph consisting of a collection of
disjoint rooted directed trees whose roots are connected by
a directed cycle. For a detailed discussion of these concepts,
we refer the reader to [9].

The Laplacian matrix Lg is defined as Lg = Dg — Ag
where Dg is the in-degree matrix

J
E .-

JEV(9)

Dg = diag , Z aly

JEV(9)

Since the columns of Lg all sum to zero, the cofactors
corresponding to the entries of each column of Lg are all

identical. Thus for each ¢ € {1,...,M} we can define the



Laplacian cofactor c¢; as the cofactor corresponding to any

entry of the ¢-th column of Lg. Kirchhoff’s Matrix Tree

Theorem allows us to express the cofactor ¢; as the sum

of the weights of directed spanning trees rooted at vertex i.
Proposition 1 (Kirchhoff’s Matrix-Tree Theorem):

Let T; denote the set of directed spanning subtrees of G

rooted at vertex ¢. For each vertex i € V(G) we have

ci= Y w(T). )
TeT;
Proof: See [9], [10]. |

B. Multi-agent systems

A system of n agents is modeled by assigning to each
agent ¢ a nonlinear equation

& = fi(xs)

describing the agent’s internal dynamics. Agents are assumed
to interact via a coupling function ¢ () that represents the
influence of agent j on agent ¢. Each agent then corresponds
to a vertex of an m-vertex graph G that describes the
interaction between agents with an edge directed from vertex
J to vertex ¢ whenever g/ is not identically zero. The coupled
M-dimensional system can then be written as

x; € R™:

= fiw)+ Y gl(x), =x€D 2)

JEN;
where # = (z1,...,2,), D is an open set in [[;_ lle
and M =37 m; We assume that the functions f; and g}

are sufficiently well-behaved to guarantee the existence and
uniqueness of solutions to (2).

Our goal is to systematically construct a global Lyapunov
function V' : D — R for the aggregate system (2) as a
linear combination of Lyapunov candidate functions V; cor-
responding to each agent i, ensuring that the time derivative
V(x) = VV - f(z) of the aggregate Lyapunov function along
trajectories of the system is non-positive everywhere in D.

III. GLOBAL LYAPUNOV FUNCTIONS FOR NETWORKED
SYSTEMS
A. Tree cycle identity

Consider a weighted dlgraph G with non-negative welghts
J . Assign to each edge ji an arbitrary edge function I :
RM — R. The vertex function for vertex ¢ is then given by

=Y alF(2)
JEN;

We wish to assign weights w; to each vertex ¢ such that the

weighted sum
Z wiFi(a:)
i€V (G)

H(z) =

can be expressed in terms of feedback cycles in G. This will
allow us to determine properties of the overall sum H based
on properties of smaller sums around each feedback cycle,
which are much easier to verify in practical applications.
To develop a method of choosing these vertex weights, we

o
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(a) Spanning unicyclic graph formed from a directed spanning tree rooted
at vertex ¢ by adding an edge directed from vertex j to ¢
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(b) The same spanning unicyclic graph shown can be formed in two other
ways, from directed spanning trees rooted at vertices j and k.

Fig. 1: Construction of spanning unicyclic graphs as the
union of a directed spanning tree and a single edge

consider unicyclic subgraphs of G. We denote the set of all
spanning unicyclic subgraphs of G by P.

An element P of P with cycle length ¢ can be expressed in
precisely ¢ distinct ways as the union of a directed spanning
tree and a single directed edge (see Figure 1). Indeed,
removing each edge ji from the cycle Cp of P yields a
directed spanning tree rooted at vertex .

In the following theorem, we show that by choosing
vertex weights w; equal to the cofactors ¢; of the weighted
Laplacian matrix Lg we can re-organize the weighted sum
H in terms of feedback cycles in G.

Theorem 1 (Tree Cycle Identity):

Let ¢; be given as in (1). Then

Y. aF@ =) wP) Y Fl)
i€V (9) PeP JieE(Cp)
Proof: By Proposition 1

ci= Y w(T)

H(z) =

TET,
Then
S ene) = Y (ZW)) S @Fi)
1€V (G) i€V (G) \TEeT; je/\/~

> 2 2 aiw(ME ().

i€V (G) TET; jeN;

Now, for each triple (4,7, 7) with i € V(G), j € N; and
T € T, there is a unique spanning unicyclic graph P € P
formed from 7 and the edge ji. Conversely, for each pair



(Q,ﬁ) with Q € P and ji € E(Cp) there is a unique
T € T, resulting from the removal of edge fi. Thus there is
a direct correspondence between triples of the form (z’, Js T)
and pairs of the form (Q, ﬁ) Then noting that ag w(T) =

w(P), we see that
> D 2 aw(DF (@)

H(z) =
iEV(g) TET; jE./V'i

= Zw(P) Z Ff(x)

PeP ﬂeE(Cp)

B. Constructing Lyapunov functions via feedback cycles

Constructing Lyapunov functions V' for large-scale net-
worked systems is difficult due to the unwieldy number of
terms in the Lyapunov derivative of V' with respect to system
(2). Even when each of the n agents is assigned only a single
state variable, the number of terms in the expression

CEPE -

i€V (G) !

filz)+ > ¢l(x)
Jev(9)
varies as the square of n.

Theorem 1 provides us with a method of grouping terms
in the Lyapunov function’s derivative in terms of cycles in
G. This gives us an easily-verifiable condition to guarantee
that V'(z) < 0 for all z. 4

Definition 1: We say that the set of edge functions {F} :
i,7 € V(G)} satisfies the cycle condition if, for any directed
cycle C in G, we have

Y Fl(z)<0
JIEE(C)
Theorem 2: Consider a Lyapunov candidate function of

the form
Z ¢ Vi(z)
i€V (G)

xz € D.

Viz)=

where each V; : RM — R is a function corresponding to
agent ¢ and c; is given as in Proposition 1. Suppose that
there exists a set of edge functions {F/ : i € V(G),j € N}
such that
1) we have
V@) < Fiw) = 3 alFi ()
JEN;

rzeD

and
2) the set of edge functions satisfies the cycle condition
given in Definition 1.
Then V satisfies V() < 0 for all € D. Namely, V is a
Lyapunov function for the system (2).
Proof: By Theorem 1 we have

V(z) < > ey alF(x)

iEV(G) JEN;

= Ywr) Y F@<o.

PeP Ji€E(Cp)

IV. A GLOBALLY STABLE HIERARCHICAL FORMATION
CONTROL FOR MULTI-AGENT SWARMS

A. Summary

Hierarchical approaches to designing communication
topologies have previously been considered for linear sys-
tems, and issues related to stability have been discussed, see
for example [11], [12]. In this section, we provide a nonlinear
example of a hierarchical control scheme.

In [13], [14], Tanner, Jadbabaie and Pappas provide a
method of stabilizing swarms of agents using artificial po-
tential functions [15], [16]. Their analysis uses a Lyapunov
function to demonstrate that their protocol stabilizes the
formation at a local minimum of the artificial potentials
and leads to the alignment of all agents. Communication
networks among agents are either complete (i.e. every agent
communicates with every other agent) or dynamic (i.e. com-
munication links appear and disappear based on proximity
of agents).

We propose a hierarchical control scheme that requires
a reduced number of edges in the communication network
compared with the complete networks considered in [13],
[14]. The key steps of our hierarchical potential clustering
(HPC) protocol are:

1) run a clustering algorithm based on the initial positions
of the agents

2) assign leaders to each cluster

3) implement the artificial potential scheme (with com-
plete interaction graph) within each cluster and

4) implement a velocity consensus scheme between the
cluster leaders.

B. Implementation of the HPC protocol

We model each agent by specifying its position r =
(x,y) € R? and velocity v = 7. The dynamics of each agent
are governed by the 4-dimensional system

ro= v,
U= u,

where the thrust u € R? is the control input.

Before designing the control inputs, agents are clustered
based on their position using an algorithm seeking to mini-
mize the sum-squared distance within each cluster. See [17],
[18] for a review of statistical clustering algorithms. If we

label the resulting clusters with integers 1,..., N then the
clustering induces a vector labelling of the agents (i, )
where ¢ is the cluster index and j € {1,...,n;} is used to

distinguish agents within cluster <. We use the index (i, 1) to
designate the leader of cluster ¢. Clustering algorithms such
as the one considered in [19] provide a natural choice of
leader called an exemplar. For algorithms that do not provide
a leader, one can be assigned arbitrarily. The choice of a
leader is not important for our purposes since we will show
that stability is independent of the choice of leader. With this
labelling of vertices, we obtain a system that describes the
collection of agents



d = ||rij — Tl

Fig. 2: Artificial potential function P(d) = 75 + log d>.

= v (3)
Uij = uij~
Now that we have clustered the agents, we need to
design control inputs u to bring each cluster of agents into
formation. Within each cluster ¢, we implement the artificial
potential control scheme. For each pair of agents (¢,5) and
(i,k) in cluster ¢ we define an artificial potential function
PiF: Ry — R. The potentials P/f* can be chosen to be any
positive, continuous functions of the distance d = ||r;; — 7|
between agents (i, j) and (i, k) that are:
o symmetric (Pf;C = P;,g
« unbounded near
. ik( 7\ _
« and that have a unique minimum at the desired distance
between agents.

Zero and infinity

An example of an appropriate potential function is shown
in Figure 2. We can then define the total potential for vertex

(i,) as

n;
P, = Z Pk
k=1

Now, for each pair of vertices (4,7) and (i, k) from the
same cluster, define the function uﬁg‘ :R2 xRZ > R as
uﬁ?(mj,rik) = ||rij — 7irl|. The position derivative V.
of the total potential function P;; is then defined as the 2-
dimensional vector

g ik ik ik ik
V’I“ij Bj = Z (8(13” . uij)v 8(PZJ ° u”)> .

k=1 0yij

This notation, used in [13], [14], emphasizes the fact that
the control protocol given in the following paragraph is
essentially a modified gradient descent, in which each agent
seeks to minimize its total potential using the local informa-
tion available to it. The artificial potential control protocol
combines this gradient descent with a consensus protocol in
the heading 6;; as follows:

uij =~V Pij — Z wﬁ(”)

= iy — 7|

RN C)

where 7(2j) is the unit vector orthogonal to v;;, and 6;; =
atan2(y;;,<;;) is the heading of agent (4,j). Among the
leaders of each cluster we apply an additional thrust to co-
ordinate their velocities

0,1 — 0; il ..
wy = -V, Py— Z Mn(ﬂ)
i1 — Tikl|
k ®)
+ Z bin(vn1 — vi1)
heN;

where b;, > 0 are the entries of an irreducible matrix B.
This ensures that the leader communication graph Gpg that
encodes the interactions among the cluster leaders is strongly
connected [20].

C. Proof of stability

We wish to demonstrate that the system defined by Equa-
tion (3) will eventually reach a desirable equilibrium.

Definition 2: A control protocol u is said to solve the
formation stabilization problem if solutions of (3) converge
asymptotically to a state in which

1) the relative positions of each agent (¢,j) within a
cluster are such that a local minimum of the total vertex
potential F;; is achieved, and

2) for any two agents (i,j) and (h,k), their headings
satisfy 0;; = Opy.

The following lemma is needed in the proof of our main
theorem. Its proof is the same as that for Equation (7) in
[14] and is therefore omitted.

Lemma 1:

G 0ij — Oir
1 [Irs; — rael 2

Theorem 3: Given any clustering scheme, the HPC proto-
col solves the formation stabilization problem provided that
the leader communication graph Gp is strongly connected.

éij:_

Proof: For each agent indexed (i, ), define a vertex
Lyapunov function

N
1 N
Vij =735 (E Pif(Ilrig — rirll) + vij - vig +8i2j> ;
k=1

and let ¢ = (¢1,...,cn) denote the vector of cofactors of
the columns of Lg,, as given by Kirchhoff’s Matrix Tree
Theorem. Define

N n;
V= Z C; Z ‘/ZJ
i=1 j=t

We will show that V' is a Lyapunov function for the multi-
agent system (3). Since Gp is strongly connected, there is a
tree rooted at each vertex of Gg. Thus all entries of ¢ are
strictly positive and hence V' is positive definite. Taking the



derivative of V' along trajectories of (3) we get
N n; )
z "3V

i=1  j=i

+2 Vij "fjij +2 9”9”‘|

V:

Z (V“J PZ] hj + V"’q‘,kPZJk ' Tzk)

k=1

Since we assume that the artificial potentials are symmetric,

(i.e. Pf]k P“g) we can re-write this expression for V.
N n;
i=1 =i
N n;
= Z C; Vm PZJ Vij
i=1 =i
0;i — )| |visll ., ..
+ vy | =V, Py — Z Mn@])
—~ lrsj — il

+v;1 - Z bin(vp1 — vi1) + Qijéij]
heN;

By definition, the vector 7(ij) is orthogonal to v;; so we
can further simplify our expression for V.

V ZCIZQUQU +Zcz Z bzh Uhl _Uzl) Vi1- (6)

i=1 heN;

For each cluster 4, define the cluster distance graph G; as
the complete graph on n; vertices (without self-loops) where
the edge jk is assigned a weight m corresponding
to the squared distance between agents (i, ) and (i, k). We
can also define the vector 0; = (0;1,...,0i,,)7 € R™ to
be the concatenation of the headings of all agents in group
1. Using Lemma 1 we can rewrite the expression for V' in
terms of the weighted Laplacian matrix L; of the graph G;
as follows

V 2019 La +Zc7zbzh rUhlfrUd) Vi1-

i=1 heN;

For each group i, the Laplacian L; is symmetric and positive
semidefinite. Since G; is strongly connected, the nullspace of
L; is spanned by the consensus vector 1 = (1,...,1)7 [21].
Therefore we have

N
V< Zci Z bin(Vp1 — vi1) - Va1
i=1  hEN;

with equality if and only if we have heading consensus §;; =
;i for all agents within each group i. We now have

bin(vp1 — vi1) - Vi

i=1 heN;
N
. .2 .. .9

= Z Cj bz’h(ﬂfhll‘u — T3 + Yn1Yi1 — yu)

i=1  heN;

al T+ T o Um UL o
< Zci bih(T — T3 "‘T —¥i1)

i=1  heN;

N

1 ) ] ) -2

= Z ¢ bih§($h1 =23+ Uh1 — Yi1)-

=1 heN;

It is easy to verify that the set of edge functions {F;‘ =
%(xil — &2 +r — Uh) iyh € V(gB)}
cycle condition. Thus by Theorem 2 we have V < 0. We
also have V = 0 if and only if 6;; = 0;, for all agents
within each group ¢ and the velocities of the leaders of each
group are identical (v;; = vy for all group indices ¢,h €
{1,..., N}). Thus the system’s configuration will converge
to the largest invariant set M contained in {(r,v) : 611 =

- =0ONny and v1; = -+ = vn1}. So we see that part (b)
of Definition 2 is satisfied.

To see that part (a) is satisfied, consider the derivative of
P;; along trajectories of the system (3). In M, we have

satisfies the

P'L] = VTUPJ Vij = vrwf)ij ( szg F)'L]) 0.

Thus trajectories converge to a configuration corresponding
to a local minimum of P;;. [ |

Compared with the complete network, the HPC scheme
shows considerable savings in terms of the number of com-
munication links, since the leader communication graph can
be chosen arbitrarily, provided that it is strongly connected.
This comes at the expense of the guarantee of collision-
avoidance provided by the complete topology.

D. Simulations

To demonstrate our results numerically, we begin by
randomly assigning initial positions and velocities to a set of
13 agents. Positions are assigned within a 10 by 10 area using
a uniform distribution, and vertical and horizontal velocities
are assigned uniformly in the range [—1, 1] (Figure 3a).

To group agents into clusters, we perform a k-means
clustering [18] with the parameter k set to 4 (Figure 3b).
Each cluster is assigned a leader at random and any pair
of distinct agents within a cluster is linked by the artificial
potential function P(z) = -5 + loga? that has a global
minimum at z = 1. The resulting formation is shown in
Figure 3d. The distances between agents within each group
converge to a value of approximately 1 which minimizes the
potential functions, and the headings of all agents achieve a
consensus.
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